

1

Machine-specified Ground Structures for Topology

Optimization of Binary Trusses using Graph Embedding Policy

Network

doi: 10.1016/j.advengsoft.2021.103032

Shaojun Zhu1,2, Makoto Ohsaki2, Kazuki Hayashi2, Xiaonong Guo1*

1 College of Civil Engineering, Tongji University, Shanghai 200092, China

2 Department of Architecture and Architectural Engineering, Kyoto University, Kyoto-

Daigaku Katsura, Nishikyo, Kyoto 615-8540, Japan

License: CC-BY-NC-ND

Abstract

This paper proposes the concept of machine-specified ground structures for topology

optimization of trusses. Unlike general ground structures with dense and regular

connectivity, machine-specified ground structures are sparse stable ground structures

with a specified number of members designed by machines. Firstly, the generation

process of machine-specified ground structures from a given node-set is formulated as

a reinforcement learning task. Graph embedding is used to integrate the structural

information into a comprehensive feature matrix to describe the state. By establishing

the policy network, the probability of each action, i.e., selecting each node in the node-

set, is obtained based on the comprehensive feature matrix. The task is solved using a

gradient-based algorithm called REINFORCE. A randomized 4×4 node-set is used to

train the agent. The policy converges with a high average reward, and generates

different yet reasonable structures because a stochastic policy is employed. Besides, the

agent can handle different-sized node-sets without re-training. Hence, the machine-

specified ground structures generated by the trained agent can be utilized to assist the

structural topology design. Subsequently, a method for a typical problem with singular

optimal solutions, i.e., topology optimization of binary trusses with stress and

displacement constraints, is proposed based on machine-specified ground structures.

Finally, through different-sized numerical examples, it is demonstrated that the

machine-specified ground structures lead to a variety of optimal solutions, and it is more

likely to obtain the global optimum than fully-connected ground structures. It is worth

noting that machine-specified ground structures can also be applied to other problems

without re-training.

Keywords

topology optimization, reinforcement learning, graph embedding, binary trusses,

machine-specified ground structures

https://doi.org/10.1016/j.advengsoft.2021.103032

2

1 Introduction

The ground structure (GS) method proposed by Dorn et al. [1] is an effective approach

to limiting the design domain of topology optimization (TO) of truss structures, and has

been widely incorporated with a variety of TO methods [2−5]. The GS method

generates a sparse optimal topology from a finite number of nodes and members in the

design domain specified by the GS. If the GS has sufficiently many nodes and members,

an optimal truss close to the analytical one, i.e., the Michell truss [6], can be obtained

by eliminating unnecessary members and nodes in the GS. There are two types of GSs,

namely the fully-connected GS and the human-specified GS with a small number of

members.

For a node-set containing n nodes, the fully-connected GS has n(n−1)/2 members.

That is to say, the number of members increases by a quadratic function of n. Moreover,

when the cross-sectional areas are selected from a predefined set of discrete values, the

design domain will expand as an exponential function of the number of possible discrete

values. In order to reduce the number of possible combinations, Kawamura et al. [7]

introduced triangular units to express the connectivity of truss elements for each

chromosome in the genetic algorithm (GA). Although this method can avoid

undesirable designs, e.g., unstable trusses or trusses with overlapping members,

heuristic algorithms like GA may converge to a local optimal solution when the number

of variables is enormous. Shakya et al. [8] also indicated that when the search space is

even larger, almost no optimization method will be able to find the global optimal

solution. Particularly, TO problems with stress constraints are facing discontinuity, as

the stress constraint suddenly disappears when the cross-sectional area of a member

diminishes to zero [9, 10]. The optimal solutions to these problems are called singular

optimal solutions because some non-existing members may violate the constraint, i.e.,

the stress constraint is design-dependent. Hagishita and Ohsaki [11] highlighted that the

GS with more members could not guarantee a better optimal solution for a TO problem

with singular optimal solutions. Therefore, it is reasonable to use sparser human-

specified GSs.

A fully-connected GS can be easily generated by connecting all potential members;

on the other hand, a human-specified GS needs to be prepared according to the

designer's preference or an intuitive knowledge for the global optimal topology.

Existing TO methods are often verified by benchmark numerical examples with human-

specified GSs [12−19]. However, for a node-set with a large number of nodes, the work

of preparing a human-specified GS is highly laborious, and it becomes tough to generate

a GS that may lead to the global optimum. An alternative would be generating the

members according to the nodal vicinity principle proposed by Beekers and Fleury [20].

3

When the nodes are uniformly distributed in a rectangular domain, it has been proved

that GSs generated by order three and order four vicinity can lead to acceptable optimal

solutions at a significantly smaller computational cost compared with a fully-connected

GS. However, the method may generate unstable GSs for random node-sets as the

definition of nodal vicinity does not consider stability. Besides, the number of members

generated by the nodal vicinity method is unpredictable under the circumstance of a

non-uniform node-set. Hence, it is hard to estimate the computational cost of the

optimization process, and the efficiency of GSs under various order nodal vicinities

cannot be evaluated in advance. Hagishita and Ohsaki [11] proposed the growing GS

method, which finds an optimal topology from a sparse GS by successively adding

nodes and members. The growing GS method can efficiently obtain the singular optimal

solution to small-size problems, yet the authors also stated that the method could not

tackle large-size problems.

In recent years, machine learning has been extensively applied in structural

engineering [21]. Machine learning techniques can be classified into three kinds,

namely supervised learning, unsupervised learning, and reinforcement learning (RL).

Supervised learning deals with problems regarding classification and regression. It has

been successfully applied to solve problems like predicting the non-linear buckling

capacity of imperfect spatial structures [22], predicting the shear capacity of reinforced

concrete structures with steel fibers [23], assessing the fire-induced progressive

collapse potential of steel frames [24], and so on. Unsupervised learning deals with

dimension reduction and clustering. It has effectively handled the problems in structural

health monitoring and damage detection [25−27]. Unlike the two techniques mentioned

above, RL deals with problems that involve the interaction between the agent and the

environment. An RL problem aims at training an agent that can maximize the

cumulative reward [28]. The training of an agent can be regarded as a trial and error

process, and the agent gradually learns how to behave better based on the rewards it

receives. Well-known applications of RL include developing autonomous driving [29]

and playing the game of Go [30]. Recently, scholars have also incorporated RL in the

TO of truss structures. As the image-based recognition method proposed by Gamache

et al. [31] turns out to be an effective approach to conduct TO on skeletal structures,

Sahachaisaree et al. [32] used convolutional neural networks [33] to process the image

of a truss structure. They trained an agent to generate stable trusses with the shortest

total member length under given support and load conditions. Hayashi and Ohsaki [34]

indicated that truss structures can be regarded as graphs instead of images so that the

graph embedding (GE) [35, 36] may have a higher potential in extracting the structural

features. They combined the Q-learning [37] with the edge-embedding in GE and

4

developed a deterministic agent to conduct TO in which unnecessary members are

successively removed from relatively sparse GSs. It is worth noting that the agent can

also deal with various-sized problems without re-training.

In order to reduce the computational time and the human workload, this paper

proposes the concept of machine-specified ground structures (MGS) for TO of binary

trusses based on the GE policy network. Section 2 describes the task of generating

MGSs and briefly introduces a general RL problem. The key elements in the current

RL task are introduced, including the state, action, reward, the policy network, and the

learning method. Section 3 provides an example to illustrate the training process of the

RL agent. The generalization ability of the trained agent is also evaluated by testing it

in different-sized environments without re-training. Section 4 describes a typical TO

problem with stress and displacement constraints and proposes a method based on the

MGSs. Different-sized numerical examples are used to verify and illustrate the

effectiveness of the proposed method.

2 RL task of the MGS method

2.1 Task description

Here we define the MGS as a reasonable GS with the following properties:

1) The whole GS is stable under an appropriate support condition to restrict rigid-

body displacements and rotation, as illustrated in Fig. 1;

2) The number of members in the GS is not so large as a fully-connected GS,

while there should also be unnecessary members to be eliminated, i.e., the truss

should be statically indeterminate. For a GS with n nodes and nc (nc ≥ 3)

translational constraints that has property 1), the minimum number of members

mmin is 2n−nc, and the maximum number of members mmax is n(n−1)/2.

Therefore, the actual number of members m should be within the range (mmin,

mmax).

Fig. 1 Different types of support conditions. (a) Appropriate condition. (b) Inappropriate

condition.

The process of generating stable GSs is simulated using RL. As explained in the

following sections, the agent trained by RL selects an action at each step from the policy

obtained by training. Obviously, there are many topologies of GSs with a specific

(a) (b)

Rigid body Rigid body

5

number of members. The more diverse the GSs are, the more likely it is that one of

them leads to the global optimal solution. Hence, MGSs should be generated by a

stochastic policy instead of a deterministic one. Besides, if one adds an additional

translational constraint or member to an MGS, it will still be reasonable so long as it

does not contain too many members. Therefore, we can first generate a stable structure

using favorable members with the least number of translational constraints, i.e., nc = 3.

Here, the term favorable means the members are highly possible to exist in the global

optimal solution, and are helpful to make the structure stable. Furthermore, for practical

application, long members should be avoided in the optimal solutions, and accordingly,

in the MGS. For example, we prefer the dotted member in Fig. 2(b) to that in Fig. 2(a)

because the former directly makes the GS reasonable, and its length is not large.

Then, the task of generating MGSs can be summarized into two steps:

1) Step 1: For a given node-set, sequentially add members to generate a stable

structure using m0 favorable members under three appropriate translational

constraints. In this step, the truss has no isolated node or support, and m0 should

be close to mmin. Various topologies are generated using a stochastic policy.

2) Step 2: Randomly add members until the number of members reaches the

specified value m.

Fig. 2 Potential members to be added in an unstable truss. (a) Unfavorable. (b) Favorable.

Note that since the structure is already stable in Step 1, the members to be added in Step

2 can be selected randomly without considering the stability of the structure. Hence,

only the stochastic policy in Step 1 needs to be trained using RL.

2.2 Overview of RL

Fig. 3 illustrates the interaction between an RL agent and the environment. At step t,

the agent observes the state st and receives the reward rt. Then, it takes the action at by

sampling from the policy function π(st). In the next step, the state transfers to st+1, and

the environment produces a new reward rt+1.

The non-linear relationship between the policy function and the state is usually

established using a neural network, which is also known as the policy network. The

policy network parameters, namely the weights and biases, are updated according to a

gradient-based learning method that aims at minimizing the error computed from the

(a) (b)

6

observed reward at each step.

To summarize, the key elements in an RL task include the state, action, reward,

policy network, and the learning method. Details of the current RL task will be

introduced in the following sections.

Fig. 3 Schematic diagram of the interaction between an RL agent and the environment.

2.3 Action

Since the number of nodes is significantly smaller than the number of potential

members, the action of the current RL task is defined as node selection. Hence, the

action space  for a truss with n nodes is

 ()1 2 3 n= (1)

Two different nodes need to be selected to generate a member. Let FN and SN denote

the first and second nodes, respectively, alternately selected by the agent. Note that 

is fixed during the RL process; therefore, the following infeasible actions may occur:

1) The same node is selected two times, namely FN = SN;

2) FN and SN (FN ≠ SN) are already connected by an existing member.

These infeasible actions can be masked without changing , which will be introduced

in Section 2.5.

2.4 State

Given three appropriate translational support conditions, stability of a binary truss is

only related to the nodal locations and the topology. Hence, we can construct a nodal

feature vector vi (i = 1, 2, …, n) in a node-set as

 ()
T

Seli i i ix y=v (2)

where xi and yi are the x and y coordinates of the ith node, respectively. Seli is defined

as the selection condition of the ith node, which also provides information on the

distance between FN and other nodes when FN has been selected. Seli is calculated by

Agent

Environment

a ~ π(s)t

rt+1

st+1

rtst
t

7

() ()
()

2 2

1 if FN or to be selected

1Sel if FNi

i j i j

i

j j i

x x y y

− =


=  = 
 − + −

 (3)

Let ()1 2
ˆ , , , n=v v v v denote the nodal feature matrix. Here we notice that v̂

and  both have n columns. Hence, it is possible to establish a policy network whose

size is independent of n so that the trained agent can be applied to node-sets with various

numbers of nodes without re-training. In other words, the policy network is expected to

evaluate the ith action based on a vector related to the ith node. However, it is

inappropriate to directly use vi as the input because the topology information has not

yet been included.

Therefore, node-embedding in GE [36] is modified and applied to integrate the

topology information by constructing a comprehensive feature vector μi for the ith node.

Let nf denote the number of elements of μi. Note that nf is a hyperparameter to be

determined and should be significantly larger than the size of vi. The iteration process

of μi to incorporate information of the neighborhood nodes is:

()0

i =μ 0 (4)

() () ()()1

1 2 3 4ReLU
T T T

i

+
= + + +μ h h h h (5)

in which
()T

iμ is the comprehensive feature vector of the ith node at the Tth iteration.

ReLU is an activation function defined for a real value x as

 ()  ReLU max 0,x x= (6)

When the ReLU function is applied to a matrix, we assume the element-wise application

of Eq. (6) for simplicity. h1, h2,
()
3

T
h , and

()
4

T
h are intermediate vectors calculated by

 ()1 1 iL=h v (7)

 () 2 3 2
ˆReLU iL L=   h vC (8)

() ()()3 4

T T

iL=h μ (9)

 () ()() 4 6 5
ˆReLU

T T

iL L =
 

h μ C (10)

where
() () () ()()1 2

ˆ , , ,
T T T T

n=μ μ μ μ is the comprehensive feature matrix at the Tth

iteration. C is an n×n adjacency matrix, and Ci is the ith column of C. The element of

8

C denoted as Ci,j (i, j = 1, 2, …, n) is defined as

()

,

1 if a member connects nodes and

0 otherwise
i j

i j i j
C

 
= 


 (11)

Lk indicates the kth linear layer:

 ()k k kL = +A w A b (12)

in which A is the input matrix/vector of the linear layer. wk and bk are the weight and

bias of the layer, respectively. The sizes of the linear layer parameters are listed in Table

1.

Table 1 Sizes of the linear layer parameters in the iteration process of the state matrix.

k wk bk

1 nf×3 nf×1

2 nf×3 nf×1

3 nf×nf nf×1

4 nf×nf nf×1

5 nf×nf nf×1

6 nf×nf nf×1

Through multiple iterations,
()T

iμ gradually integrates the information of the ith

node and its far-away neighbors. When the maximum number of iterations is specified

as Tmax (Tmax ≥ 1), it is reasonable to use ()maxˆ
T

μ to represent the state of the structure.

2.5 Policy network

Let ()1 2
ˆ , , , n=μ μ μ μ denote the comprehensive feature matrix at the Tmaxth iteration

for simplicity. As briefly mentioned in Section 2.4, the policy network ()ˆπ=p μ is

established as follows:

 ()9 7 8

1

ReLU ReLU ;
n

i i i

i

Q L L L
=

      
=     

      
μ μ (13)

 =Q SQ (14)

 () ()1 2

1

1
Softmax e ,e , ,e

e

n

i

QQ Q

n
Q

i=

= =


p Q (15)

9

where [·;·] is an operator which concatenates two vectors in the column direction,

namely

  ;
 

=  
 

X
X Y

Y
 (16)

in which arbitrary matrices X and Y have the same number of columns. Qi in

()1 2, , , nQ Q Q=Q is the value of the ith action. L7 to L9 are linear layers whose

parameter sizes are shown in Table 2. S is the selection matrix for masking the infeasible

actions when selecting SN, defined as

()1 2

when FN is to be selected

diag , , , when SN is to be selected

n n

nS S S


= 



E
S (17)

 ()
,FN

,FN

1 if 0
 1,2, ,

10 if FN or 1

i

i

i

C
S i n

i C

=
= =

− = =
 (18)

where En×n is an n×n identity matrix. ()1 2, , , nQ Q Q=Q is the masked action value

vector. Softmax is a function that maps the input data into probabilities of selecting the

nodes according to their relative magnitudes of action values.

Table 2 Sizes of the linear layers in the policy network.

k wk bk

7 nf×nf nf×1

8 nf×nf nf×1

9 1×2nf 1×1

Since Qi is always non-negative owing to the application of the ReLU function, the

masked action value of an infeasible action would be non-positive. After the application

of the softmax function, the probabilities of selecting the infeasible actions are expected

to be smaller than the feasible ones.

To summarize, the agent observes the state μ̂ and computes the probability vector

p according to the policy network at each time step. The action is sampled based on p,

and different actions will be taken at the same state in different episodes or even in the

same episode with a different random seed. An episode is defined here as the process

of generating a stable truss. Therefore, this type of policy network is called a stochastic

policy.

10

2.6 Reward

Let rp denote the accumulated positive reward, and it is initialized to 0 at the beginning

of the episode. The reward and termination condition of an episode is specified as

follows:

1) If FN is selected at step t, the reward rt is 0, and the episode proceeds;

2) If the agent takes an infeasible action at step t, a negative number −λin (λin > 0)

is assigned to rt, and the episode terminates;

3) If a feasible SN is selected and a member is generated at step t, rt is determined

as

()

0

if the member is th-order favorable 1,2,

if the member is unfavorable

i

t

i i
r





 =
= 

−
 (19)

where λi (i = 0, 1, 2, …) are positive numbers. The ‘ith-order-favorable’ is to

be specified appropriately for each problem. A low-order favorable member is

more likely to exist than a high-order favorable member, so λi+1 < λi is

recommended when i > 0. If rt > 0, update rp as

 p p tr r r + (20)

If rt < 0, proceed with the episode by selecting FN without updating rp.

4) When the number of members is not smaller than mmin, check the stability. If

the truss is stable, i.e., the stiffness matrix is full-rank, update the reward as

 pt tr r r + (21)

i.e., the previous positive reward is doubled, and the episode terminates. When

the number of members is smaller than mmin or the truss is unstable, the reward

is not updated, and proceed with the episode by selecting FN.

Here we note that even though the positive reward is doubled when the structure

becomes stable, the value of the reward is only dependent on the current state instead

of the sequence of the previous actions. In other words, the process maintains the

Markov property. Besides, different parameters in the reward policies will result in

agents with different behaviors.

2.7 Learning method

Let θ denote the vector containing all the parameters in linear layers L1~L9, and denote

the policy network as πθ. The classical policy gradient method REINFORCE [38] is

used to update the parameters:

 ()θJ + θ θ θ (22)

11

where α is the learning rate, J(θ) is the expected reward under policy πθ, and ()θJ θ

is the gradient of J(θ) with respect to the parameters in θ:

 ()
() () ()

p

T

θ

1 2

, , ,
n

J J J
J

  

   
  =
   
 

θ θ θ
θ (23)

in which np is the number of elements in θ, i.e., the total number of parameters in the

policy network. Let a batch denote a group of episodes under the current policy πθ, and

then the corresponding ()θJ θ can be estimated using the Monte-Carlo sampling

method:

 () ()
max 1

θ θ θ

1 0

1
ln π

itM
i i i

t t t

i t

J G a s
M

−

= =

 
   

  
 θ (24)

where M is the number of episodes in the batch, max

it is the maximum number of steps

in the ith episode, and i

ta and i

ts are the action and state, respectively, at the tth step

in the ith episode. i

tG is the weighted return observed from the tth step in the ith

episode calculated by

max 1it

i t t i

t t

t t

G r
−

−



=

=  (25)

in which γ is the discount factor of the future reward and i

tr  is the reward of the t’th

step in the ith episode.

3 Numerical examples of generating stable trusses

3.1 Training

A 4×4 node-set, as shown in Fig. 4, is used to train the agent. Note that Ni (i = 1, 2, …,

16) represents the ith node number, which is shuffled at the beginning of each episode.

The nodal location is also randomized with a maximum amplitude of 0.2 m along the x

and y directions. The coordinates of node Ni are

,

,

1
floor 0.2

4

1
1 4 floor 0.2

4

i

i

N x i

N y i

i
x

i
y i





 − 
= + 

  


−  = − −  +   

 (26)

where i is the subscript of Ni ranging from 1 to 16, which indicates the relative location

of node Ni. The floor() function returns the largest integer not greater than the input. ξx,i

12

and ξy,i are random numbers within the range of [−1, 1]. In every episode, the stable

support condition is guaranteed by a horizontal translational constraint at N1 and two

vertical translational constraints at N1 and N16 as illustrated in Fig. 4.

Fig. 4 The randomized 4×4 node-set used for training.

Let lij define the length of the member connecting nodes Ni and Nj. Two orders of

favorable members are defined as

1) 1st-order: () ()
2 2

0 1 2 0.2 2 0.2ijl  +  +  ;

2) 2nd-order: () () () ()
2 2 2 2

1 2 0.2 2 0.2 1 2 0.2 1 2 0.2ijl+  +    +  + +  .

The reward parameters λin, λ0, λ1, and λ2 are 10, 5, 20, and 10, respectively.

The maximum number of GE iterations Tmax is 4, and the number of elements in

the comprehensive feature vector nf is 100. The adaptive gradient optimizer RMSprop

[39] is used to update the parameters, where the learning rate α is 1×10−4, the discount

factor γ is 0.99, and the batch size M is 20. The total number of batches is 10000.

The training of 200000 (= 2010000) episodes takes about 34.2 h on a laptop

computer with a CPU of Intel(R) Core(TM) i7-7700 @3.60 GHz and a GPU of NVIDIA

GeForce GTX 1080. Both the CPU and GPU have participated in the computation. The

RL task is solved in Python 3.8 environment. Fig. 5 plots the training history of the

agent when the random seed equals 100, 200, and 300. The vertical axis indicates the

average reward of the episodes in a batch. It can be seen that all of the 3 curves

converged after 4000 batches of training, and the average reward remained

approximately at 1000. The highest average reward of 1123.5 occurs at the 9708th batch

when the random seed is 100. Its corresponding policy is regarded as the optimal policy,

denoted as π*.

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N

N

N

N

N

N

11 15

12 16

14

13

1 m 1 m 1 m

1
 m

1
 m

1
 m

x

y

13

Fig. 5 Training history of the agent under various random seeds.

3.2 Testing

The optimal policy π* is tested using the training node-sets. The trusses generated by

policy π* are as shown in Fig. 6. Note that the support conditions are the same as stated

in Section 3.1, and they are not plotted for simplicity. Since the agent acts based on a

stochastic policy, different trusses are generated under different random seeds. The

trusses are all stable, and the majority of members are favorable.

Fig. 6 Trusses generated by policy π* using the training node-sets.

The generalization ability of the agent is tested using the following node-sets

without re-training:

1) Node-set A: A regular 4×4 node-set, i.e., ξx,i and ξy,i equal to 0 in Eq. (26);

2) Node-set B: A regular 5×4 node-set shown in Fig. 7(a);

3) Node-set C: A regular 6×3 node-set shown in Fig. 7(b).

Fig. 7 Testing node-sets. (a) Node-set B. (b) Node-set C.

Trusses generated by π* using node-sets A, B, and C are shown in Fig. 8, Fig. 9,

and Fig. 10, respectively. It can be observed that the trusses generated by the trained

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000

A
v

er
ag

e
re

w
ar

d
Batch number

seed = 100
seed = 200
seed = 300

N1

N2

N3

N4

N5

N6

N7

N8

N9

N10

N

N

N

N

N

N

11 15

12 16

14

13

1 m 1 m 1 m

1
 m

1
 m

1
 m

x

y
N

N

N

N

19

20

18

17

1 m

N1

N2

N3

N4

N5

N6

N7

N 8

N

N

N

N9 12

11

10

1 m 1 m 1 m

1
 m

1
 m

x

y
N

N

N15

14

13

1 m

N

N

N18

17

16

1 m

(a) (b)

14

agent are all stable, and favorable members account for a large percentage. Therefore,

it can be concluded that the agent is able to handle different-sized problems effectively

without re-training.

Fig. 8 Trusses generated by policy π* using node-set A.

Fig. 11(a) and (b) illustrate the first and last four steps, respectively, of the

generation process of a truss from node-set C. The probabilities of the actions are also

plotted above the nodes, and the node highlighted in red corresponds to the action taken

by the agent in the current step. Note that there are 39 members in step 78, including 3

unfavorable long overlapping members. The probability of each action when choosing

the first node is uniform. This is because the reward of choosing the first node is 0, and

the difference between the rewards of favorable and unfavorable members is not

significant; therefore, the action scores Qi are not yet updated to a positive value. Due

to the existence of the ReLU function, Qi is 0 for all actions. As the topology generated

by π* is reasonable, Fig. 12(a) and (b) show part of the generation process of another

agent trained under λ0 = 40 and other reward parameters unvaried. Let π** denote its

policy function. It can be seen that the probabilities of selecting FN are not uniform,

while it also illustrates that different reward parameters lead to agents with various

behaviors. Since the trained agent can provide the probability of taking each action, the

trained agent can also assist engineers in designing the topology based on a given node-

set.

Fig. 9 Trusses generated by policy π* using node-set B.

Fig. 10 Trusses generated by policy π* using node-set C.

15

Fig. 11 Generation process of a truss using node-set C under π*. (a) First four steps. (b) Last four

steps.

step = 1 (selecting FN) step = 2 (selecting SN)

(a)

step = 3 (selecting FN) step = 4 (selecting SN)

(b)

step = 75 (selecting FN) step = 76 (selecting SN)

step = 77 (selecting FN) step = 78 (selecting SN)

step = 1 (selecting FN) step = 2 (selecting SN)

(a)

step = 3 (selecting FN) step = 4 (selecting SN)

16

Fig. 12 Generation process of a truss using node-set C under π**. (a) First four steps. (b) Last four

steps.

4 Solving TO problems with singular optimal solutions with MGS

In this section, a framework is proposed for solving a TO problem with singular optimal

solutions using the MGS method. Effectiveness of incorporating MGSs is demonstrated

through numerical examples.

4.1 TO with stress and displacement constraints

The following TO problem with stress and displacement constraints is a typical TO

problem with singular optimal solutions as stated in Section 1:

()

 

()

 

()

m, L

dof, L

,

, 1,2, ,

,

, 1,2, ,

find

min.

s.t. max 1

max 1

j

j

i j

i j n

i j

i j n

V

u

u



 

 




  
   
  

 
  
   
  

 

A

A

A

A

 (27)

where A = (A1, A2, …, Am) is the vector of cross-sectional areas, and V(A) is the total

structural volume. nL is the number of load cases. Ωm,j and Ωdof,j are the sets of indices

of existing members and DOFs of existing nodes under the jth load case, respectively.

σi,j is the stress of the ith member in Ωm,j, and ui,j is the displacement of the ith DOF in

Ωdof,j under the jth load case.  and u are the allowable stress and displacement,

respectively. The displacement constraint is included to prevent obtaining an obvious

and meaningless solution with no existing members for the stress constrained problem

because the stress constraint need not be satisfied by a non-existing member. However,

(b)

step = 65 (selecting FN) step = 66 (selecting SN)

step = 67 (selecting FN) step = 68 (selecting SN)

17

a tight bound is given in Example 5 in Section 4.5 to compare the results with those

obtained by existing methods.

The cross-sectional area Ai (i = 1, 2, …, m) is taken from a discrete section library

 
s1 2, , , nS S S S=

s1 2()nS S S   in numerical examples 1−4 and 6, where ns is

the total number of cross-sections in the library, while the section library can also be a

continuous range as exemplified in Example 5.

4.2 TO method using MGSs

Since the MGS method is able to provide various stable GSs, we propose the following

method to solve the TO problem presented in Section 4.1:

1) Step 1: Generate the MGS. Generate a truss with m0 members using the agent

trained by the RL method presented in Section 2 and demonstrated in Section

3. Randomly add members consecutively until the truss has m members.

Assign the largest available cross-sectional area
snS to Ai (i = 1, 2, …, m);

2) Step 2: Remove unnecessary members. Conduct linear analysis for each load

case and pick mr members with the lowest stress ratios. Regard these members

as removed by setting their cross-sectional areas as 10−6

snS . For problems with

a loose displacement constraint, repeat the process above until the

displacement constraint is violated; for problems with a tight displacement

constraint, repeat step 2 and the fully-stressed design, i.e., step 3, until the

displacement constraint is violated. Note that the stress ratio of the ith member

Ri is defined as

,| |

max
i j

i
j

R



= (28)

where ,i j is the stress of the ith member (*

mi  ) under the jth load case,

and *

m is the set of remaining members.

3) Step 3: Fully-stressed design (FSD). Conduct linear analysis for the GS

obtained in Step 2. Assign the cross-sectional area of the ith member as

s

F

i i nA R S= (29)

The cross-sectional area of the ith member can be selected from the library

according to

18

()

F

1 1*

F

1

if

if 2

i

i

j j i j

S A S
A

S S A S j−

 
= 

  

 (30)

If the stress constraint is not satisfied, repeat the following process and the

selection of the cross-sectional area, i.e., Eq. (30), until the maximum stress

among the existing members becomes smaller than  :

 F F

i i iA R A (31)

This way, we can obtain approximate optimal solutions from various GSs that have

moderately sparse topologies, and may contain the members existing in the global

optimal solution. A simple deterministic FSD is used here to substantiate the

effectiveness of using the MGS in comparison to the fully-connected GS. Note that the

process of Eq. (30) is omitted if the cross-sectional areas are continuous variables.

Fig. 13 Support and load conditions of the numerical examples. (a) Numerical example 1. (b)

Numerical example 2. (c) Numerical example 3.

4.3 Numerical examples 1−3: Comparison of MGSs and fully-connected GS

Effectiveness of the method proposed in Section 4.2 is demonstrated by numerical

examples of trusses with node-sets corresponding to 4×4, 5×4, and 6×6 regular node-

sets, as shown in Fig. 13. For each numerical example, the truss has two pin-supports.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

F = 10 kN1,x

F = 50 kN2,x

F = 10 kN2,y

1 m 1 m 1 m

F = 50 kN1,y

1
 m

1
 m

1
 m

x

y

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 m 1 m 1 m

1
 m

1
 m

1
 m

x

y

(b) F = 10 kN1,y

F = 50 kN1,x

17

18

19

20

1 m

F = −10 kN2,x

F = 50 kN2,y

1

2

3

7

8

9

13

14 20

19

1 m 1 m 1 m

1
 m

1
 m

x

y

26

25

1 m

32

31

1 m

(c)

4

15 21

1
 m

27 33

5

10 161
 m

28 34

6

1
 m

29 3511 17

12 18

22

23

24 30 36

F = 10 kN1,x

F = 50 kN1,y

F = −50 kN2,y

F = 10 kN2,x

F = −50 kN3,y

F = 10 kN3,x

19

Fi,β indicates the β-directional ({ , }x y ) load of the ith load case.

The elastic modulus E is 2.0×105 MPa, the allowable stress  is 200 MPa, and

the allowable displacement u is taken as 100 times the maximum displacement in the

GS to avoid meaningless solutions. The cross-section library is set to be S = {200, 400,

600, 800, 1000} (unit: mm2), i.e., ns = 5.

The node-set of numerical examples 1, 2, and 3 contain 16, 20, and 36 nodes,

respectively. The number of translational constraints is 4. mmin and mmax are determined

as listed in Table 3. The number of members m selected in the MGS for each numerical

example is also listed in Table 3.

Table 3 Number of members in the numerical examples.

Numerical example mmin mmax m

1 28 90 65

2 56 190 90

3 68 630 200

The agent with the optimal policy π* obtained in Section 3 is used to generate

MGSs without re-training for each node-set. In order to obtain 20 different MGSs, the

random seeds are set as integers ranging from 0 to 19. The optimal solutions of

numerical examples 1, 2, and 3 using MGSs are shown in Fig. 14, Fig. 15, and Fig. 16,

respectively. Note that only the 3 optimal solutions with the least total structural

volumes are exhibited for each numerical example. The optimal solutions using the

fully-connected GS are also shown in Figs. 17−19 for comparison. Note that the fully-

connected GS is also optimized according to Steps 2 and 3 in Section 4.2. In Figs. 14−19,

Max SR indicates the maximum stress ratio of the existing members. Since the removed

members are assigned a small cross-sectional area, nv indicates the number of removed

members that violate the stress constraint. A positive nv indicates that the optimal

solution is singular. The structure on the left is the GS, and the structure on the right is

the corresponding optimal solution. In the optimal solution, the width of each member

is proportional to its cross-sectional area. The statistical data of the CPU time, the total

structural volume, and the maximum stress ratio for the 20 solutions under different

random seeds in each numerical example are tabulated in Table 4, where ‘Std.’ denotes

the standard deviation. The comparison of the structural volumes of the optimal

solutions are tabulated in Table 5.

20

Fig. 14 Optimal solutions of numerical example 1 using the MGS method. (a) Seed = 1. (b) Seed =

14. (c) Seed = 17.

Max SR = 0.96

nv = 2

(a)

Time = 0.181 s

V = 0.00428 m3

Max SR = 1.00

nv = 6

(b)

Time = 0.204 s

V = 0.00536 m3

Max SR = 1.00

nv = 13

(c)

Time = 0.202 s

V = 0.00430 m3

Max SR = 0.88

nv = 2

(a)

Time = 0.280 s

V = 0.00614 m3

21

Fig. 15 Optimal solutions of numerical example 2 using the MGS method. (a) Seed = 7. (b) Seed =

14. (c) Seed = 16.

Max SR = 0.95

nv = 0

(b)

Time = 0.293 s

V = 0.00528 m3

Max SR = 0.96

nv = 18

(c)

Time = 0.302 s

V = 0.00597 m3

Max SR = 0.95

nv = 2

(a)

Time = 0.868s

V = 0.01123 m3

Max SR = 0.81

nv = 25

Time = 0.798 s

V = 0.01202 m3

(b)

22

Fig. 16 Optimal solutions of numerical example 3 using the MGS method. (a) Seed = 5. (b) Seed =

7. (c) Seed = 11.

Fig. 17 Optimal solution of numerical example 1 using the fully-connected GS.

Fig. 18 Optimal solution of numerical example 2 using the fully-connected GS.

Fig. 19 Optimal solution of numerical example 3 using the fully-connected GS.

Max SR = 0.79

nv = 48

Time = 0.893 s

V = 0.01475 m3

(c)

Max SR = 0.82

nv = 11

Time = 0.271 s

V = 0.00426 m3

Max SR = 0.86

nv = 7

Time = 0.566 s

V = 0.00434 m3

Max SR = 0.88

nv = 85

Time = 5.425 s

V = 0.01291 m3

23

Table 4 Statistical data of the 20 results in numerical examples 1−3.

Numerical

example

CPU time / s V / 10−3 m3 Max SR

Min. Max. Mean Std. Min. Max. Mean Std. Min. Max. Mean Std.

1 0.169 0.412 0.226 0.064 4.28 9.68 6.81 1.43 0.79 1.00 0.92 0.07

2 0.262 0.423 0.302 0.035 5.28 17.16 9.58 3.07 0.55 1.00 0.88 0.12

3 0.634 1.645 0.888 0.202 11.23 23.01 16.36 3.45 0.75 1.00 0.88 0.07

Table 5 Comparison of structural volumes of optimal solutions in examples 1−3, and 6.

Typical solution
V / 10−3 m3

Example 1 Example 2 Example 3 Example 6

1 4.28 6.14 11.23 5.74

2 5.36 5.28 12.02 5.57

3 4.30 5.97 14.75 4.99

fully-connected GS 4.26 4.34 12.91 5.63

Comparing the optimal solutions and the computational cost using MGSs and the

fully-connected GS, it can be concluded that:

1) Based on the TO method proposed in this paper, various local optimal

solutions can be obtained using the different MGSs. On the other hand, the

fully-connected GS can provide only a deterministic optimal solution if a

deterministic FSD is used;

2) The fully-connected GS does not necessarily lead to the global optimum, as

stated in reference [11]. For example, the fully-connected GS of numerical

example 3 produces an optimal solution with a volume of 0.01291 m3. For the

same problem, the optimal structural volumes using MGSs under random

seeds 5 and 7 are 0.01123 m3 and 0.01202 m3, respectively. The optimal

solution based on MGSs may, in some cases, be worse than the solution based

on the fully-connected GS as shown in Table 5. However, for a TO problem

with singular optimal solutions, it is more likely to obtain a solution closer to

the global optimum if the MGS method is used;

3) As it takes the longest time to optimize the fully-connected GS of each

numerical example, the calculation cost is reduced when a sparser MGS is used.

Although the MGS method requires the TO to be conducted multiple times,

the computational cost can be reasonably estimated according to the number

of members in the MGS. Besides, as can be observed from the solutions of

numerical example 3, though the total CPU time for 20 solutions by MGS is

larger than the CPU time for the fully-connected GS, the advantage of using

24

MGS will be significant for a large-scale problem;

4) Although the difference between the maximum and minimum values of the

CPU time, the total structural volume, and the maximum stress ratio for the 20

different random seeds are large, their standard deviations are moderately

small.

4.4 Numerical example 4: Comparison of MGSs and human-specified GS

Rasmussen and Stolpe [40] used the parallel cut-and-branch method to optimize an L-

shaped truss shown in Fig. 20, denoted as numerical example 4. Pinned supports are

located at nodes 5 and 15. A vertical load F = 450 kN is applied at node 20. The elastic

modulus is 70 GPa. The section library is {5, 10}×10−3 m2. Fig. 21 plots the optimal

solutions solved by the reference [40] under various allowable stresses, where the

number beside each member indicates the cross-sectional area (unit: 10−3 m2). The

structural volumes of structures in Figs. 21 are tabulated in Table 6.

Fig. 20 Support and load conditions of numerical example 4.

Fig. 21 Optimal solutions of numerical example 4 under various allowable stresses obtained in

Ref. [40]. (a) 170 MPa = . (b) 130 MPa = . (c) 90 MPa = .

The node-set in Fig. 20 is used to generate MGSs with m = 100 members, and the

agent with policy π* trained in Section 3 is utilized. Note that there are 21 nodes and 4

translational constraints, so mmin and mmax are 38 and 210, respectively. During the

x

y
1

2

3

4

6

7

8

0.5 m 0.5 m 0.5 m

0
.5

 m
0

.5
 m

0
.5

 m

F

0.5 m

5 10

0
.5

 m

11

12

13

14

15

16

17

18

19

20

21

9

F

(a)

F

(b)

F

(c)

5

5

5

5 5

5 5 5

5

5

5

55

10

10 5

5 10

10

5 5

10

10 10

10
5

5
5

5

5

5

5

5

5

10

10

5

510

10

5 5 5

5 5

5 5

25

generation process of the MGS, members outside the L-shaped design domain,

emerging due to nonconvexity of the design domain, are simply ignored without

assigning additional constraints because the agent acts stochastically.

Table 6 Comparison of optimal solutions of numerical example 4.

 / MPa
Total structural volume / m3

Method in Ref. [40] Proposed method

170 0.0466 0.0432

130 0.0608 0.0519

90 0.0608 0.0564

For each allowable stress, 20 MGSs are generated by varying the random seeds

from 0 to 19. The optimal solutions for  = 170, 130 MPa, and 90 MPa occur at the

18th, 6th, and 13th MGS, respectively. The optimal solutions and the corresponding

MGSs are shown in Figs. 22, 23, and 24, respectively. The structural volumes are also

tabulated in Table 6. It can be observed that the structural volumes of solutions obtained

by MGSs are smaller than those of the solution obtained by a human-specified GS in

reference [40], because longer diagonal members are allowed to exist in the MGSs. It

is notable that the agent trained using a regular-shaped truss is also effective for the

irregular-shaped truss.

Fig. 22 Optimal solution of numerical example 4 obtained by the 18th MGS (170 MPa =).

Fig. 23 Optimal solution of numerical example 4 obtained by the 6th MGS (130 MPa =).

V = 0.0432 m3

Max SR = 0.79

nv = 8

5

5

10

10
5

5

5

5
5

5

V = 0.0519 m3

Max SR = 0.75

nv = 5

5

10

10

5

5

5

5

5 55

26

Fig. 24 Optimal solution of numerical example 4 obtained by the 13th MGS (90 MPa =).

4.5 Numerical example 5: Problem with a strict displacement constraint

In the studies of Deb and Gulati [41] and El Bouzouiki et al. [42], a 39-member 12-

node truss shown in Fig. 25 is optimized using the GA and the non-uniform cellular

automata framework, respectively. We denote this example as numerical example 5.

The truss is simply-supported, and the single load case contains three concentrated

loads F = 90.72 kN. The density of the material is 2768 kg/m3, and the elastic modulus

is 68947 MPa. The allowable stress and displacement are 137.89 MPa and 0.0508 m,

respectively. The cross-sectional library is a continuous variable, and the lower and

upper bounds are 6.45×10−4 mm2 and 1.45×103 mm2, respectively. The optimal

topologies obtained by references [41] and [42] are shown in Fig. 26(a) and Fig. 26(b),

respectively. The cross-sectional areas and the structural weights are tabulated in Table

7. Note that a single cross-sectional area corresponding to two members indicates that

the two members have the same cross-sectional area.

Fig. 25 Support and load conditions of numerical example 5.

Fig. 26 Optimal solutions of numerical example 5. (a) Ref. [41]. (b) Ref. [42].

V = 0.0564 m3

Max SR = 1.00

nv = 5

5

5 10

10
5

55 5

5 5
5

5

5
5

3.05 m 3.05 m 3.05 m 3.05 m

3
.0

5
 m

3
.0

5
 m

F F F

F F FF F F

(a) (b)

1
32

7

4

5
6

9

10

8
11

13 12
17

14

15
16

19

20

18
1

2
7

5
6

9

10

8
11

12

15

19

20

18
21

22
16

1723

24

25

27

The node-set in Fig. 25 is used to generate 50 MGSs with m = 39 members by

varying the random seeds from 0 to 49, and the agent with policy π* trained in Section

3 is utilized. Note that there are 12 nodes and 3 translational displacement constraints,

and accordingly, mmin and mmax are 21 and 66, respectively. The optimal solutions based

on the 1st and the 26th MGS are plotted in Fig. 27, where W indicates the total structural

weight. The cross-sectional areas and the structural weights are also tabulated in Table

7 for comparison. It can be seen that the 1st MGS leads to a solution superior to the

solution in reference [41]. Besides, the weight of the solution based on the 26th MGS

is higher than yet quite close to that of the solution in reference [42]. However, we can

also expect a better solution when the number of MGSs increases.

Table 7 Comparison of optimal solutions of numerical example 5.

Member No.
Cross-sectional area / mm2

Fig. 26(a) [41] Fig. 26(b) [42] Fig. 27(a) Fig. 27(b)

1, 11 969.03 967.74 986.20 986.40, 1005.69

2, 12 684.51 754.97 929.30 931.45, 733.67

3, 13 32.90 − − −

4, 14 32.90 − − −

5, 15 33.55 421 − −, 688.59

6, 16 33.55 55.61 − −

7, 17 161.94 55.61 − −

8, 18 484.52 534.00 657.25 178.92, 189.74

9, 19 360.64 248.84 − −, 437.29

10, 20 648.39 222.58 − −, 676.13

21, 23 − 55.61 − −

22, 24 − 223.55 734.59 731.68, −

25 − 199.35 657.20 284.23

Structural weight / kg 89.152 87.090 88.780 87.280

Therefore, it can be concluded that the MGS method is also available to handle

problems when both the stress and displacement constraints are tight, and to obtain

favorable solutions.

Max SR = 1.00

nv = 4

W = 88.78 kg
(a) 22

2
25

12 11

24

1 8 18

28

Fig. 27 Optimal solutions of numerical example 5 obtained by the MGS method. (a) The 1st MGS.

(b) The 26th MGS.

4.6 Numerical example 6: Problem considering member buckling

In the numerical examples 1−5, the allowable stress of tension and compression is

considered to be equal, i.e., the member buckling is ignored. In order to demonstrate

the feasibility of the MGS method under member buckling constraints, the same TO

problem of numerical example 1 is solved by replacing the constant allowable stress

 (unit: MPa) as

 cr

200 for tension members

min ,200 for compression members





= 


 (32)

where σcr is the Euler buckling stress of the member, which is related to the member

length and the radius of gyration of the cross-section. For calculation of σcr, square

hollow sections are assigned to the cross-section library S = {200, 400, 600, 800, 1000}

(unit: mm2), as tabulated in Table 8.

Since the Euler buckling stress varies non-linearly with the cross-sectional area,

the FSD design, i.e., Step 3 in Section 4.2, is not applicable for compression members.

Instead, we use the axial force to determine the cross-section of compression members.

Given the absolute value of the axial force of the ith member in compression is Nc,i (i =

1, 2, …, nm), then its cross-sectional area is determined as

()

1 c, cr, ,1*

cr, , 1 c, cr, ,

if

if 2

i i

i

j i j i i j

S N N
A

S N N N j−


= 

  
 (33)

where Ncr,i,j (j = 1, 2, …, ns) is the Euler buckling load of the ith member when the jth

cross-section is adopted. Note that Ncr,i,j is related to the length of the ith member.

Therefore, the intermediate nodes connecting only 2 colinear members should be fixed

or removed, e.g., the intermediate nodes on the right side of Fig. 19.

Table 8 Cross-sectional properties of the sections in numerical example 6.

Width and height/ mm Thickness / mm Area / mm2 Radius of gyration / mm

50 1.021 200 20.000

52 2.000 400 20.429

Max SR = 1.00

nv = 25

W = 87.28 kg
(b) 22

1 2
8 18

1925

20

15

12 11

29

54 2.938 600 20.881

56 3.834 800 21.354

58 4.690 1000 21.848

The agent with the optimal policy π* obtained in Section 3 is used to generate 30

MGSs without re-training, and TO is conducted based on the modified method

mentioned above. The 3 typical solutions are shown in Fig. 28. The optimal solution

using the fully-connected GS is also shown in Fig. 29 for comparison. Note that the red

line indicates that the member is in compression under at least one load case. The

structural volumes are tabulated in Table 5 for comparison.

Fig. 28 Optimal solutions of numerical example 6 using the MGS method. (a) Seed = 10. (b) Seed

= 17. (c) Seed = 22.

Max SR = 0.87

nv = 54

(a)

Time = 0.301 s

V = 0.00574 m3

Max SR = 1.00

nv = 44

(b)

Time = 0.300 s

V = 0.00557 m3

Max SR = 1.00

nv = 39

(c)

Time = 0.309 s

V = 0.00499 m3

30

Fig. 29 Optimal solution of numerical example 6 using the fully-connected GS.

Comparing the optimal solutions of numerical examples 1 and 6, it can be

concluded that:

1) Member buckling constraint can be incorporated by assigning the Euler

buckling stress as the lower bound for the stress;

2) The MGS method can be effectively incorporated with different TO algorithms

to obtain various local optimal solutions;

3) Although some of the optimal topologies considering member buckling are the

same as those without considering member buckling, i.e., Fig. 14(c) and Fig.

28(b), one can expect an optimal topology with shorter compression members

by generating more MGSs, e.g., Fig. 28(c), as the computational cost of

generating MGSs is relatively low if a trained agent is used.

5 Conclusions

This paper proposes the MGS method for TO of binary trusses using RL and GE.

Through a numerical example of the training and testing of the RL agent, the following

conclusions are drawn:

1) By defining the action for nodes, rather than members, and by specifying a

member by the first and second nodes to be selected, the size of action space

is drastically reduced compared with the case of defining the action with

respect to the member to be added;

2) The policy of the agent converges with a high average reward under different

random seeds of training, i.e., the formulation of the RL task is robust against

the randomness during the training process;

3) The RL agent can produce different stable trusses under different random seeds

since a stochastic policy has been employed;

4) By incorporating GE in extracting the structural information, the agent can

handle trusses with node-sets of different sizes from the training ones.

Max SR = 0.86

nv = 96

Time = 0.731 s

V = 0.00563 m3

31

The trained RL agent for generating stable binary trusses is also expected to assist the

topology design, as the various stable trusses generated by the agent involving

randomness can be used as MGSs for improving the possibility of obtaining the global

optimal topology. Based on the MGS method, a framework to solve the TO problem

with stress and displacement constraints is proposed as an example. Six numerical

examples are solved using the proposed framework. Numerical examples 1−3 compare

the optimal solutions obtained based on MGSs and fully-connected GSs; numerical

example 4 compares the optimal solution obtained based on MGSs and human-

specified GS; numerical example 5 demonstrates the feasibility of using MGSs on TO

problems with tight displacement constraints; numerical example 6 deals with TO

problems with member buckling constraints. In specific, the following conclusions are

obtained:

5) Different MGSs can lead to different optimal solutions, while the fully-

connected GS or a specific human-specified GS can only provide a

deterministic optimal solution if a deterministic TO method is used. MGSs can

lead to better solutions compared with the fully-connected GS and human-

specified GSs. Hence, the MGS method is more likely to obtain a global

optimal solution for a TO problem with singular optimal solutions;

6) The computational cost of optimizing a sparse MGS is lower than that of

optimizing a fully-connected GS. Even if one intends to conduct TO on

multiple MGSs, the computational cost can still be reasonably estimated.

Therefore, the MGS method has a significant advantage in solving large-scale

problems;

7) Member buckling constraint can be incorporated by assigning the Euler

buckling stress as the lower bound for the stress. Furthermore, by avoiding the

existence of unfavorable long members, the MGS method can effectively

handle problems with member buckling constraints, where short members are

favored for compression;

8) A GS including all members existing in the global optimal solution can be

generated by taking the union of members that are effective for each load case;

9) The MGS method is also effective when a tight displacement constraint is

assigned, and can be incorporated with different TO algorithms to obtain

various local optimal solutions other than stress and displacement constraints.

Since MGSs are various stable GSs with appropriate statical indeterminacy, the agent

trained in this paper can be used for optimization of binary trusses with various design

conditions.

32

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available

from the corresponding author upon reasonable request.

Acknowledgments

The authors gratefully acknowledge the financial support provided by the China

Scholarship Council (CSC) during a visit of Shaojun Zhu (No. 201906260152) to Kyoto

University. Besides, the first author would like to acknowledge Bolei Zhou for

providing an open-access course on reinforcement learning and Qiang Zeng for his

suggestions on this research. The second author acknowledges the support by JSPS

KAKENHI Grant Number JP20H04467.

References

[1] Dorn W, Gomory R, and Greenberg H. Automatic design of optimal structures.

Journal de Mécanique, 1964, 3: 25-52.

[2] Topping B H V. Shape optimization of skeletal structures: a review. Journal of

Structural Engineering, 1983, 109(8): 1933-1951. doi: 10.1061/(ASCE)0733-

9445(1983)109:8(1933)

[3] Miguel L F F, Lopez R H, and Miguel L F F. Multimodal size, shape, and topology

optimisation of truss structures using the Firefly algorithm. Advances in

Engineering Software, 2013, 56: 23-37. doi: 10.1016/j.advengsoft.2012.11.006

[4] Finotto V C, da Silva W R L, Valášek M, and Štemberk P. Hybrid fuzzy-genetic

system for optimising cabled-truss structures. Advances in Engineering Software,

2013, 62: 85-96. doi: 10.1016/j.advengsoft.2013.04.012

[5] Hayashi K and Ohsaki M. FDMopt: Force density method for optimal geometry

and topology of trusses. Advances in Engineering Software, 2019, 133: 12-19. doi:

10.1016/j.advengsoft.2019.04.002

[6] Michell A G M. The limits of economy of material in frame-structures. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1904,

8(47): 589-597. doi: 10.1080/14786440409463229

[7] Kawamura H, Ohmori H, and Kito N. Truss topology optimization by a modified

genetic algorithm. Structural and Multidisciplinary Optimization, 2002, 23(6):

467-473. doi: 10.1007/s00158-002-0208-0

[8] Shakya A, Nanakorn P, and Petprakob W. A ground-structure-based representation

with an element-removal algorithm for truss topology optimization. Structural and

Multidisciplinary Optimization, 2018, 58(2): 657-675. doi: 10.1007/s00158-018-

1917-3

33

[9] Kirsch U. Optimal topologies of truss structures. Computer Methods in Applied

Mechanics and Engineering, 1989, 72(1): 15-28. doi: 10.1016/0045-

7825(89)90119-9

[10] Ohsaki M. Genetic algorithm for topology optimization of trusses. Computers &

Structures, 1995, 57(2): 219-225. doi: 10.1016/0045-7949(94)00617-C

[11] Hagishita T and Ohsaki M. Topology optimization of trusses by growing ground

structure method. Structural and Multidisciplinary Optimization, 2009, 37(4): 377-

393. doi: 10.1007/s00158-008-0237-4

[12] Steven G, Querin O, and Xie M. Evolutionary structural optimisation (ESO) for

combined topology and size optimisation of discrete structures. Computer Methods

in Applied Mechanics and Engineering, 2000, 188(4): 743-754. doi:

10.1016/S0045-7825(99)00359-X

[13] Guo X, Cheng G, and Yamazaki K. A new approach for the solution of singular

optima in truss topology optimization with stress and local buckling constraints.

Structural and Multidisciplinary Optimization, 2001, 22(5): 364-373. doi:

10.1007/s00158-001-0156-0

[14] Stolpe M and Svanberg K. A note on stress-constrained truss topology optimization.

Structural and Multidisciplinary Optimization, 2003, 25(1): 62-64. doi:

10.1007/s00158-002-0273-4

[15] Richardson J N, Adriaenssens S, Bouillard P, and Coelho R F. Multiobjective

topology optimization of truss structures with kinematic stability repair. Structural

and multidisciplinary optimization, 2012, 46(4): 513-532. doi: 10.1007/s00158-

012-0777-5.

[16] Mela K. Resolving issues with member buckling in truss topology optimization

using a mixed variable approach. Structural and Multidisciplinary Optimization,

2014, 50(6): 1037-1049. doi: 10.1007/s00158-014-1095-x.

[17] Zhou P, Du J, and Zhenhua L Ü. Interval analysis based robust truss optimization

with continuous and discrete variables using mix-coded genetic algorithm.

Structural and Multidisciplinary Optimization, 2017, 56(2): 353-370. doi:

10.1007/s00158-017-1668-6.

[18] Pedroza-Villalba M, Portilla-Flores E A, Vega-Alvarado E, Calva-Yáñez M B,

Santiago-Valentín E, and Alcalá-Fazio E. Truss topology optimization based on a

birth/death element approach. IEEE Access, 2018, 6: 72609-72619. doi:

10.1109/ACCESS.2018.2881609

[19] Tejani G G, Savsani V J, Bureerat S, Patel V K, and Savsani P. Topology

optimization of truss subjected to static and dynamic constraints by integrating

simulated annealing into passing vehicle search algorithms. Engineering with

34

Computers, 2019, 35(2): 499-517. doi: 10.1007/s00366-018-0612-8

[20] Beekers M and Fleury C. A primal-dual approach in truss topology optimization.

Computers & Structures, 1997, 64(1-4): 77-88. doi: 10.1016/S0045-

7949(96)00144-7

[21] Sun H, Burton H V, and Huang H. Machine learning applications for building

structural design and performance assessment: state-of-the-art review. Journal of

Building Engineering, 2020: 101816. doi: 10.1016/j.jobe.2020.101816

[22] Zhu S, Ohsaki M, and Guo X. Prediction of non-linear buckling load of imperfect

reticulated shell using modified consistent imperfection and machine learning.

Engineering Structures, 2021, 226: 111374. doi: 10.1016/j.engstruct.2020.111374

[23] Olalusi O B and Awoyera P O. Shear capacity prediction of slender reinforced

concrete structures with steel fibers using machine learning. Engineering Structures,

2021, 227: 111470. doi: 10.1016/j.engstruct.2020.111470

[24] Fu F. Fire induced progressive collapse potential assessment of steel framed

buildings using machine learning. Journal of Constructional Steel Research, 2020,

166: 105918. doi: 10.1016/j.jcsr.2019.105918

[25] Wang Z and Cha Y J. Unsupervised deep learning approach using a deep auto-

encoder with a one-class support vector machine to detect structural damage.

Structural Health Monitoring, 2020: 1475921720934051. doi:

10.1177/1475921720934051

[26] Entezami A, Shariatmadar H, and Mariani S. Fast unsupervised learning methods

for structural health monitoring with large vibration data from dense sensor

networks. Structural Health Monitoring, 2020, 19(6): 1685-1710. doi:

10.1177/1475921719894186

[27] Flah M, Nunez I, Chaabene W B, and Nehdi M L. Machine learning algorithms in

civil structural health monitoring: a systematic review. Archives of Computational

Methods in Engineering, 2020: 1-23. doi: 10.1007/s11831-020-09471-9

[28] Sutton R S. Reinforcement Learning. Boston: Springer, 1992. doi: 10.1007/978-1-

4615-3618-5

[29] Sallab A E L, Abdou M, Perot E, and Yogamani S. Deep reinforcement learning

framework for autonomous driving. Electronic Imaging, 2017, 2017(19): 70-76.

doi: 10.2352/ISSN.2470-1173.2017.19.AVM-023

[30] Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T,

Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, Driessche G, Graepel

T, and Hassabis D. Mastering the game of go without human knowledge. Nature,

2017, 550(7676): 354-359. doi: 10.1038/nature24270

[31] Gamache J F, Vadean A, Noirot-Nérin É, Beaini D, and Achiche S. Image-based

35

truss recognition for density-based topology optimization approach. Structural and

Multidisciplinary Optimization, 2018, 58(6): 2697-2709. doi: 10.1007/s00158-

018-2028-x

[32] Sahachaisaree S, Sae-ma P, and Nanakorn P. Two-Dimensional Truss Topology

Design by Reinforcement Learning//ICSCEA 2019. Springer, Singapore, 2020:

1237-1245. doi: 10.1007/978-981-15-5144-4_122

[33] LeCun Y, Bottou L, Bengio Y, and Haffner P. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi:

10.1109/5.726791

[34] Hayashi K and Ohsaki M. Reinforcement learning and graph embedding for binary

truss topology optimization under stress and displacement constraints. Frontiers in

Built Environment, 2020, 6: 59. doi: 10.3389/fbuil.2020.00059

[35] Makarov I, Kiselev D, Nikitinsky N, and Subelj L. Survey on graph embeddings

and their applications to machine learning problems on graphs. PeerJ Computer

Science, 2021, 7:e357. doi: 10.7717/peerj-cs.357

[36] Dai H, Khalil E B, Zhang Y, Dilkina B, and Song L. Learning combinatorial

optimization algorithms over graphs. arXiv preprint arXiv:1704.01665, 2017.

arXiv:1704.01665

[37] Watkins C J C H and Dayan P. Q-learning. Machine Learning, 1992, 8: 279-292.

doi: 10.1023/A:1022676722315

[38] Williams R J. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 1992, 8: 229-256. doi:

10.1007/BF00992696

[39] Tieleman T and Hinton G. Lecture 6.5 - RMSProp: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural Networks for Machine

Learning, 2012, 4: 26-31.

[40] Rasmussen M H and Stolpe M. Global optimization of discrete truss topology

design problems using a parallel cut-and-branch method. Computers & Structures,

2008, 86(13-14): 1527-1538. doi: 10.1016/j.compstruc.2007.05.019

[41] Deb K and Gulati S. Design of truss-structures for minimum weight using genetic

algorithms. Finite Elements in Analysis and Design, 2001, 37(5): 447-465. doi:

10.1016/S0168-874X(00)00057-3

[42] El Bouzouiki M, Sedaghati R, and Stiharu I. A non-uniform cellular automata

framework for topology and sizing optimization of truss structures subjected to

stress and displacement constraints. Computers & Structures, 2021, 242: 106394.

doi: 10.1016/j.compstruc.2020.106394

