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Abstract 10 

This paper proposes a real-time prediction method for key monitoring physical 11 

parameters (KMPPs) for early warning of fire-induced building collapse using machine 12 

learning. Since the actual load distribution and structural material properties of the 13 

burning building are usually unknown and uncertain, easy-to-measure parameters of 14 

the burning building, including easy-to-measure KMPPs (displacements and 15 

displacement velocities) of key joints, and temperatures of key structural members of 16 

the building, are incorporated as the input to predict the hard-to-measure KMPPs. The 17 

long short-term memory network is adopted in the machine learning framework. The 18 

network can be trained offline during the design stage through simulated data and used 19 

online with real-time measured data in fire. A portal frame building is numerically 20 

examined, and the results indicate that the trained agent can identify unknown and 21 

uncertain parameters and predict the hard-to-measure KMPPs with high accuracy and 22 

efficiency, enhancing the accuracy and reliability of early warning for fire-induced 23 

building collapse. 24 
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1 Introduction 30 

Fire safety is an important issue in structural design since an uncontrolled building fire 31 

may cause severe property losses and fatalities [1, 2]. As a result, current studies on 32 

structural fire engineering mainly focused on ensuring the safety of residents under fire 33 

conditions, and much progress has been achieved either in the aspects of improving the 34 

structural fire resistance [3− or suggesting fire evacuation strategies [6−. Recently, 35 

as the fire-induced building collapse has been a major threat to the safety of firefighters, 36 

as shown in Fig. 1, early warning of the building collapse is proposed to be a more and 37 

more important issue for firefighters [9, . Previously, commanders at the fire rescue 38 

site could only make visual observations of the state of the burning building and make 39 

decisions based on their experiences, which is usually inaccurate and unreliable. 40 

Therefore, it is necessary to develop a scientific and reasonable method to raise on-site 41 

early warning of the fire-induced collapse in order to facilitate wise decisions on the 42 

evacuation of firefighters at the most appropriate time, which may greatly enhance the 43 

efficiency of the firefighters’ rescue. 44 

   45 

Fig. 1 Fire-induced collapse of a steel building. (a) Building before collapse. (b) Building after 46 

collapse 47 

One essential issue in the real-time evaluation, or early warning of the collapse 48 

state of the structure for a burning building, is exploring the key monitoring physical 49 

parameters (KMPPs), which should meet the following requirements: 50 

R1 The KMPPs should have a specific and quantitative relationship with the 51 

ultimate collapse state; 52 

R2 The KMPPs should, at least, implicitly contain the information of uncertain 53 

parameters, e.g., the actual load distribution and intensity, structural material 54 

properties, and fire scenario; 55 

R3 The KMPPs should be easy to obtain under fire conditions. 56 

In this way, although dynamic responses and natural frequencies of the structure will 57 

change under fire conditions due to stiffness degradation, their variation laws are hard 58 

to be summarized, and it is difficult to obtain them timely in real fire conditions, i.e., 59 

(a) (b)



the parameters only satisfy requirement R2. In standard fire tests, the temperature, 60 

displacement, and displacement velocity are key parameters to evaluate the fire 61 

resistance of specimens [11]. Similarly, the collapse state of burning structures is 62 

proposed to be traced by monitoring the displacements and displacement velocities of 63 

key positions on the periphery of the structure [12−14], as they are proved to satisfy 64 

requirements R1 and R2. However, the high temperature and dense smoke in fire 65 

greatly influence the accuracy of contact displacement measurement systems and 66 

optical displacement measurement systems. Though microwave radars can overcome 67 

the difficulties mentioned above, it is still hard to directly measure the displacement of 68 

the joints at the top of the structure since the radars should be placed on the ground. 69 

Therefore, it is essential to develop a method for obtaining the hard-to-measure KMPPs, 70 

i.e., the displacements, in order to perfect the early warning method and theory of 71 

structural fire-induced collapses. 72 

Here we notice that the temperature of key members can be easily acquired through 73 

pre-embedded thermocouples during the construction process. Besides, the structural 74 

response of a specific structure under a determinate fire scenario is determinate. 75 

Specifically, given specific load conditions and material properties, the displacements 76 

of the burning structure under a specific fire scenario, i.e., structural temperature field, 77 

can be uniquely determined. Traditional methods for this process include the thermal-78 

structural coupling analysis using the finite element (FE) method. Roy et al. [15] 79 

established an FE model using ABAQUS to simulate the collapse behavior of a steel 80 

building in the fire test, and a deformed shape similar to the test result was acquired. 81 

Lausova et al. [16] adopted SCIA Engineer to study the deformation of a heated portal 82 

frame. Foster et al. [17] used VULCAN to model the structural response of the burning 83 

building in the Cardington test, and a satisfactory simulation result was obtained 84 

compared to the test data. Jiang et al. [18] studied the axial displacements of heated 85 

columns and vertical displacements of heated slabs in the fire-induced collapse process 86 

of a multi-story steel frame using LS-DYNA. Besides, OpenSees, a software initially 87 

designed for seismic analysis, was also extended to include the modeling of structures 88 

under fire load due to its open-source nature and object-oriented design, see Jiang et al. 89 

[19]. However, the thermal-structural coupling analysis is computationally expensive 90 

and time-consuming; hence, it is almost impossible to be conducted at fire rescue scenes 91 

for early warning of fire-induced collapse. 92 

Some researchers proposed alternatives to thermal-structural coupling analysis for 93 

the mapping from measured temperature to the early-warning level [20] or the structural 94 

response [21]. However, we emphasize that the above methods are based on an 95 

unrealistic assumption, i.e., the material properties and the load distributions are 96 



assumed to be deterministic values in the design phase. In other words, the temperature 97 

cannot be considered as the only KMPP since it does not fully satisfy requirement R2. 98 

In addition, the uncertain structural parameters mentioned above are very hard to be 99 

explicitly identified in time at the fire rescue scene since the number of them almost 100 

equals the number of members. Notably, the early-warning theory for fire-induced 101 

collapse proposed by Li et al. [13, 14, 22] also introduced the reliability theory in order 102 

to consider the influence of various determinate structural geometric parameters, e.g., 103 

the span and height, on the early-warning level. In this way, failure to consider the 104 

uncertain structural parameters will cause higher errors, and the significance of early 105 

warning will decrease. Therefore, the temperature must be incorporated with other 106 

physical parameters in order to form KMPPs for early warning of fire-induced collapse. 107 

With the development of the computer science, machine learning (ML) techniques 108 

have gained great popularity in the field of structural fire engineering to reduce the 109 

computational cost. Naser et al. [23] compared the performance of several ML 110 

algorithms in six structural and fire engineering problems using various performance 111 

metrics. Fang et al. [24] adopted an ML approach to identify the stages of the fire 112 

development in typical residential room fires using thermocouples. A satisfactory 113 

accuracy of 85% within 2 min error range was achieved compared with the 114 

experimental data. Mashhadimoslem et al. [25] used a multi-layer neural network to 115 

predict the flame lengths and width of a jet fire, and a good agreement with 116 

experimental results was achieved. Wang et al. [26] used the convolutional neural 117 

networks and smoke images to identify the transient fire heat release rate of the building 118 

fire, and the error was no more than 20%. Kou et al. [27] proposed a real-time 119 

estimation method of building fire location and intensity based on the gated recurrent 120 

unit. The reliability and efficiency of the method were studied through fire simulations. 121 

Besides, the physics-informed neural networks proposed by Raissi et al. [28] can 122 

effectively resolve complex and computationally expensive problems by introducing 123 

the residual of partial differential equations as physical constraints. As Samaniego et al. 124 

[29] and Rao et al. [30] used the physics-informed ML approach to solve linear 125 

elasticity and hyperelasticity problems in continuum mechanics and simulate 126 

incompressible laminar flows, its application in the field of fire dynamics is promising. 127 

Recently, the recurrent neural network (RNN), which can rapidly deal with the non-128 

linear mapping relationship of time series data, has achieved satisfying results in time-129 

dependent structural response modeling [31]. Noteworthy, the long short-term memory 130 

(LSTM) network, an improved form of RNN, can solve the gradients vanishing and 131 

exploding problems of the traditional RNN, which makes it behave well in resolving 132 

long time series problems. Zhu et al. [32] adopted the LSTM network to predict the 133 



deterioration process of metro shield tunnels, and a better prediction over the traditional 134 

multi-layer neural networks was achieved. Zhang et al. [33] used the LSTM network to 135 

model the structural seismic response, and satisfactory results were obtained with 136 

respect to both synthetic data and field sensing measurements. Xu et al. [34] extended 137 

research [33] by introducing a recursive mechanism in the network architecture to 138 

improve the performance of time series prediction of seismic problems. As for 139 

applications in structural fire engineering, Zhang et al. [35] proposed a framework to 140 

forecast the fire development and flashover of compartment fires based on the LSTM 141 

network and temperature data. Analyses revealed that the trained model could adapt to 142 

various fuel types and ventilation conditions. Wu et al. [36] combined the LSTM 143 

network with the transpose convolution neural network to forecast the development of 144 

tunnel fires. A temperature field prediction of 60 s in advance was achieved with high 145 

accuracy of 97%. Therefore, the strong non-linear fitting capability of the LSTM 146 

network is promising in conducting structural parameter identification in order to use 147 

the temperature data to obtain the hard-to-measure KMPPs. 148 

This study proposes a method for real-time prediction of hard-to-measure KMPPs 149 

for early warning of fire-induced collapse using ML. The rest of this paper is organized 150 

as follows: Section 2 introduces the ML framework using the LSTM network, including 151 

the inputs, outputs, network architecture, and the learning method. Section 3 provides 152 

a numerical example to illustrate the application process of the scheme, and two agents 153 

are trained to investigate the importance of uncertain parameter identification. Section 154 

4 evaluates the performances of two ML models and discusses the further application 155 

of the proposed method in collapse state monitoring and collapse time prediction. 156 

 157 

2 ML framework 158 

2.1 Problem background 159 

Early warning of the fire-induced collapse at fire rescue scenes includes the real-time 160 

acquisition of the current state and prediction of the remaining time of the burning 161 

frame before the collapse. Through theoretical, experimental, and numerical analysis of 162 

the collapse behavior of steel portal frames under fire, the displacement and 163 

displacement velocity of key joints were found to have a specific and quantitative 164 

relationship with the collapse state, thus selected as KMPPs for early warning. 165 

Specifically, for single-span steel portal frames, the displacements at the apex and eaves 166 

and corresponding displacement velocities were selected as KMPPs, as shown in Fig. 167 

2. 168 



 169 
Fig. 2 KMPPs of single-span steel portal frames [13]. 170 

The fire-induced collapse process of steel portal frames can be divided into 4 states 171 

according to the variation laws of real-time KMPPs-time curves: safety state, 1st 172 

warning state, 2nd warning state, and 3rd warning state. The 4 collapse states are 173 

distinguished by 3 warning levels, as shown in Fig. 3. Taking the overall collapse mode 174 

as an example, the KMPPs-time curves are shown in Fig. 4, where the characteristic 175 

points in KMPPs-time curves were defined as early-warning points. The occurrence of 176 

each warning level can be determined according to the occurrence of early-warning 177 

points, as tabulated in Table 1. 178 

Table 1 Determination of collapse state based on KMPPs [13]. 179 

Collapse state Occurrence criteria Definition of points 

Safe stage No early-warning points occur A: Vp reaches its peak value 

B: Vp decreases to 0 

C: pV  reaches 10 times of 
,

p

A BV  

D: VhL reaches its peak value or hLV  

reaches 10 times of 
,

hL

A BV  

1st warning state Occurrence of point A 

2nd warning state Occurrence of one point C, D or E 

3rd warning state Occurrence of two points C, D, E 

Definitions: 

,

p

A BV : average value of pV  from point A to point B 

,

hL

A BV : average value of hLV  from point A to point B 

 180 
Fig. 3 Collapse process of single-span steel portal frames under fire. 181 

At the ith warning level (i = 1, 2, 3), the remaining collapse time R

iT   can be 182 

predicted as 183 

 R M M

i i iT t T=   (1) 184 

where M

it  is the ratio of remaining collapse time to fire exposed time at the ith warning 185 

level, and M

iT  is the fire exposed time at the ith warning level. R

iT   and M

iT   are 186 

determined based on measurements while M

it   is a predetermined probability-based 187 

value. Parameter analysis on fire and structural uncertainties such as heating conditions, 188 

Vp

VhL
VvL

VhR

VvR

z

x

1st warning state 

fire ignition collapse

1st warning level 2nd warning level 3rd warning level

safety state 2nd warning state 3rd warning state 



fire protection levels, load ratios and geometry dimensions of frames indicate that M

it  189 

vary in a certain range with these uncertainties. Therefore, reliability theory coupled 190 

with Monte Carlo Sampling were adopted to quantitatively consider the influence of 191 

this uncertainties on M

it . Detailed discussion about the early-warning theory of fire-192 

induced of steel portal frames can be referred to in [13, 14]. Since the early-warning 193 

theory is quantitative and is of reliability significance, we can conclude that the 194 

decisions facilitated by the early-warning theory are more accurate and reliable than 195 

existing experience-based decisions. 196 

  197 

Fig. 4 KMPP-time curves of single-span steel portal frames under fire [13]. (a) Displacement-time 198 

curves. (b) Displacement velocity-time curves. 199 

To sum up, the essential of the early warning theory of fire-induced collapse is 200 

using the variation law of real-time KMPPs, i.e., displacements at key joints, to reflect 201 

the collapse state of the burning structure. Nonetheless, some of the joints are located 202 

at the top of the structure. Although it is possible to accurately measure their 203 

displacement directly using the microwave radar in a scaled specimen, the measurement 204 

scheme will be challenging for real structures since the radar must be placed on the 205 

ground. Hence, the problem that this paper aims to resolve is making the hard-to-206 

measure KMPPs easy to obtain, i.e., making the KMPPs fully satisfy requirement R3. 207 

 208 

2.2 Inputs and outputs 209 

Parameter identification is a hot topic in structural health monitoring [37−39], where 210 

the damage to the structure can be identified by the structural responses, which 211 

implicitly contain the variation in effective material properties and conditions. This 212 

concept can be applied to resolve the problem that the temperature itself cannot reflect 213 

the uncertain structural parameters at fire scenes, as some of the KMPPs are easy to 214 

measure, e.g., the displacements of the joints located on the wall of the structure. In 215 

specific, the easy-to-measure displacements can be used for structural parameter 216 

identification, while the easy-to-measure temperature can be used to represent the fire 217 

scenario. As the structural parameters and the fire scenario of a specific structure are 218 

(a)

time
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determined, its structural response can be uniquely determined, as stated in Section 1. 219 

Fig. 5 exhibits the flowchart of the concept mentioned above, where the easy-to-220 

measure temperatures and displacements are used as the inputs, and the outputs are the 221 

hard-to-measure displacements. The ultimate goal is to evaluate the collapse state of 222 

the burning structure according to the early warning theory [13, 14], using the KMPPs, 223 

i.e., both the easy-to-measure and hard-to-measure displacements. Note that the ML 224 

model can be trained offline using numerical simulation results, and the computational 225 

cost of the trained ML model is significantly smaller than traditional FE analysis; hence, 226 

all the KMPPs can be easy to obtain with the trained ML model. 227 

  228 

Fig. 5 Flowchart of the concept of the ML problem. 229 

 230 

2.3 LSTM cell 231 

The LSTM layer consists of a series of LSTM cells to map the non-linear relationship 232 

of time series data. Fig. 6 shows the detailed structure of a typical LSTM cell, which 233 

contains the cell state, hidden state, and three gates (i.e., forget gate, input gate, and 234 

output gate, denoted by subscripts ‘F,’ ‘I,’ and ‘O,’ respectively) for information 235 

filtering. In Fig. 6, x(t) and y(t) are the input and output at the tth time step, respectively; 236 

w and b with various subscripts indicate the weights and biases of the corresponding 237 

gates, respectively; ‘σ (the sigmoid function)’ or ‘tanh’ is the activation function of the 238 

gate. 239 

It is notable that the cell state is the essential difference between LSTM and 240 

traditional RNN, as it runs straight down the LSTM chain to avoid the leak of long-241 

term historical information. At the tth time step, the cell state ct is updated as 242 

 ( ) ( )1t t t t t−= +c F c I C  (2) 243 

where ⊙ denotes the Hadamard product; tC  is an intermediate state containing the 244 

new memory: 245 

Easy-to-measure 

temperatures

Easy-to-measure 

displacements

Hard-to-measure displacements

Collapse state of the burning structure

Trained

ML model

Inputs

Outputs



 ( )( )

C 1 Ctanh , t

t t−
 = + C w h x b  (3) 246 

where ht−1 is the hidden state at the (t−1)th time step; wC and bC are the weights and 247 

biases of the neuron for calculating tC . Ft and It are the outputs of the forget gate and 248 

input gate, respectively: 249 

 ( )( )

F 1 F, t

t t −
 = + F w h x b  (4) 250 

 ( )( )

I 1 I, t

t t −
 = + I w h x b  (5) 251 

The hidden state ht of the LSTM cell serves as the output at the current time step 252 

and input at the next time step: 253 

 ( )tanht t t=h O c  (6) 254 

where Ot is the output of the output gate: 255 

 ( )(t )

t O t 1 O, −
 = + O w h x b  (7) 256 

 257 

Fig. 6 Detailed structure of an LSTM cell at the tth time step. 258 

By introducing the three gates mentioned before, the LSTM network can 259 

successfully extract the key features of long-term time series data and can avoid the 260 

gradient vanishing existing in traditional RNNs. 261 

 262 

2.4 Network architecture 263 

With the strong capability of non-linear fitting of time series data, the LSTM layers, 264 

containing a number of LSTM cells, are incorporated with fully-connected (FC) layers 265 

to form the network in this study, as shown in Fig. 7. In Fig. 7, tmax is the length of the 266 

time series data used for the training, nth is the number of easy-to-measure temperatures, 267 

nmd is the number of easy-to-measure displacements, npd is the number of hard-to-268 

· +

·
tanh

·


wF, bF


wI, bI

tanh
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wO, bO

Input x(t)

Output y(t)
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measure displacements, and these parameters are predetermined for the training of a 269 

specific structure; nb is the batch size used for training, nf is the size of the hidden state, 270 

and these parameters are hyperparameters which need to be tuned according to the 271 

performance of the trained agent; ‘ReLU’ is the Rectified Linear Unit activation 272 

function for strengthening the nonlinear fitting ability; ‘Dropout’ indicates that a certain 273 

percent of neurons within the network will be omitted during the current training step 274 

in order to avoid overfitting [40, 41]. To summarize, the network shown in Fig. 7 275 

realizes the mapping from a sample of inputs 
( ) ( ) ( )  ( )max max th md

T
1 2

, , ,
t t n n +

= X x x x  276 

into the corresponding sample of outputs 
( ) ( ) ( )  max pdmax

T
1 2

, , ,
t nt 

= Y y y y , where xi 277 

and yi are the ith element within the time series data (i = 1, 2, …, tmax). 278 

Notably, the size of the LSTM layer is independent of tmax, indicating that the length 279 

of the time series in practical use can be different from that used in training. 280 

 281 

Fig. 7 Network architecture. 282 

2.5 Learning method 283 

The learning method adopted herein is to update the network parameters during the 284 

training phase, i.e., the weights and biases, in order to improve the non-linear fitting 285 

ability of the network. 286 

Traditional Stochastic Gradient Decent (SGD) [42] method updates network 287 

parameters  by 288 

 ( ) ( ) ( )1i i i


−
= −θ θ g  (8) 289 

where (i) is the network parameters at the ith iteration step;  is the learning rate; g(i)  290 

is the gradient of the loss function J with respect to the network parameters at the ith 291 

iteration step, which can be calculated by the backpropagation algorithm. The loss 292 

function is denoted by the error between the predicted and target output of the network. 293 
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Typical loss functions include the L1 loss, mean squared error (MSE) loss, mean 294 

squared logarithmic error loss. The learning rate of the SGD method remains constant 295 

throughout the training phase, which brings about severe problems. In specific, a small 296 

learning rate results in slow convergence, while a large learning rate leads to violent 297 

oscillation near the optimum (either global or local) parameter set . 298 

Improved learning methods like AdaGrad [43] can adjust learning rate 299 

automatically according to historical gradients: 300 

 ( ) ( )

( ) ( )

( )1

1

i i i

i
j j

j





−

=

= −

  +
 

θ θ g

g g

 (9) 301 

where  is a sufficiently small positive number to prevent parameter explosion. 302 

Compared with the SGD method, the actual learning rate of AdaGrad decreases with 303 

the accumulation of gradients in training. Nonetheless, further analysis indicates that 304 

the actual learning rate will approach zero if the training phase is too long, as the 305 

denominator in Eq. (9) can be very large. 306 

In order to resolve this problem, the Root Mean Square Propagation (RMSProp) 307 

[44] is proposed to conditionally throw out historical gradients in the parameter 308 

updating process: 309 

 ( ) ( )

( )

( )1i i i

i





−
= −

+
θ θ g

v

 (10) 310 

where v(i) is the second raw moment estimate of gradients: 311 

 ( ) ( ) ( ) ( )1( ) 1
i i ii  
−  = + −

 
v v g g  (11) 312 

in which  is a hyperparameter for weighted average. 313 

Besides, Adam is a new stochastic optimization algorithm proposed by Kingma 314 

and Ba [45] for updating . It combines the ability of AdaGrad to deal with sparse 315 

gradients and the ability of RMSProp to deal with non-stationary objectives. At ith 316 

training iteration,  is updated as 317 

 ( ) ( )

( )

( )
1

11

1

i
i i

ki

k








−
= −

−
+

−

m
θ θ

v

 (12) 318 

where 
1

k  and 
k  are the kth power of the hyperparameters 1 and , respectively; 319 

m(i) is the biased first-moment estimate of gradients: 320 

 ( ) ( ) ( ) ( )1

1 11
i i i

 
−

= + −m m g  (13) 321 

Adam is recommended as the learning method of the proposed ML framework due to 322 



its robustness on complex optimization problems, fewer requirements of memory, and 323 

ease of implementation [46]. 324 

 325 

3 Numerical example 326 

3.1 Geometric information and FE model 327 

As a representative example, a single-span steel portal frame is designed to illustrate 328 

the application and accuracy of the proposed ML framework. The frame was designed 329 

according to the Chinese code [47], with pinned column bases and without fire 330 

protection. The frame has 12 bays with an interval of 6 m and 1 span of 24 m, as shown 331 

in Fig. 8. The detailed geometric information of steel components is shown in Table 2. 332 

 333 

Fig. 8 Layout of the portal frame. 334 

Table 2 Section information of steel members. 335 

Member type Cross-section (unit: mm) 

side column H500×250×6×10 

end column H250×175×4.5×6 

rafter H600×180×6×8 

purlin H200×100×3.2×4.5 

connect beam Ø180×5 

brace Ø22 

The dataset for training the ML agent will be generated using thermal-structural 336 

coupling analysis in the general FE software ABAQUS [48]. The two-node Timoshenko 337 

beam element B31 is used to model the steel members. An element mesh size of 0.15 338 

m is used for rafters and columns, while an element mesh size of 0.3 m is used for other 339 

secondary members. Two load steps are set in the FE analysis: 340 

S1 Apply dead loads to the frame at ambient temperature; 341 

S2 Heat the frame according to a preset scheme with the applied load until it 342 

z

x

y

purlin

brace

side column

end column

connecting beam

rafter



collapses. 343 

The detailed validation of the FE model is referred to in literature [22]. 344 

 345 

3.2 Uncertain parameters 346 

Here we note again that the uncertain parameters under fire conditions include the load 347 

intensity and distribution, material properties, and the fire scenario. These parameters 348 

will be taken as random variables in the preparation of the training dataset according to 349 

the following principles: 350 

(1) Load intensity and distribution 351 

The horizontal wind load is ignored for single-span steel portal frames due to its 352 

little effect on the structural fire response [49]. The vertical load, which can greatly 353 

influence the fire resistance, is assumed to be uniformly distributed on each rafter, as 354 

shown in Fig. 9. However, the line load intensity on the rafters at the ith bay, i.e., 
L

iq  355 

and 
R

iq , are assumed to obey the uniform distribution of U(0.3qu, 0.5qu), where qu 356 

refers to the ultimate load capacity of the frame under uniformly distributed load at 357 

ambient temperature. 358 

 359 

Fig. 9 Load distribution on rafters at the ith bay. 360 

(2) Material properties 361 

The Q235 steel is adopted as the material of all the components. The yield strength 362 

fy, and ultimate strength fu of steel at ambient temperature are assumed to obey uniform 363 

distribution regarding their design values (with the subscript ‘d’), as tabulated in Table 364 

3. Note that the elastic modulus E and elevated-temperature reduction coefficient of the 365 

material properties of steel are taken as determinate values according to Eurocode 3 366 

[50], since the reduction in material properties obeys an objective law. 367 

Table 3 Steel properties at ambient temperature. 368 

Material property Probability distribution Designed value 

fy U(0.9fy,d, 1.1fy,d) fy,d = 235 MPa 

fu U(0.9fu,d, 1.1fu,d) fu,d = 294 MPa 

R

iq
L

iq



(3) Fire scenarios 369 

Without loss of generality, the fire is assumed to be ignited at the fourth bay for 370 

simplification. The randomness of the fire scenarios will be considered by different 371 

cases of fire spread along the span and bay. A total of 39 fire scenarios (denoted as 372 

FS1−FS39), which are the combinations of 12 heating conditions along the span and 4 373 

heating conditions along the bay, are considered. Since the temperature of steel 374 

members along the length is uneven in real fires, temperature partitions are adopted 375 

herein for each member. Here we note that as the goal of the ML framework is learning 376 

the parameter identification and the mapping relationship from the temperature to the 377 

structural response, even though the actual temperature distribution does not 378 

correspond to the specified one, the trained agent is still expected to produce a 379 

satisfactory prediction, which will be validated in Section 4. Thus, regarding the current 380 

numerical example, the heating conditions along the span and the bay are tabulated in 381 

Tables 4 and 5, respectively, where T1 and T2 are uniform temperature partitions. Steel 382 

members in T2 will retain the ambient temperature, while members in T1 will be 383 

uniformly heated. The corresponding partition numbers are defined in Figs. 10 and 11. 384 

Table 4 Heated partitions of different heating conditions along the span. 385 

Heating condition T1 T2 

S1 H1, 2 H3− 

S2 H1−3 H4− 

S3 H1−4 H5− 

S4 H3, 4 H1−, H5− 

S5 H3−5 H1, 2, H6− 

S6 H2−5 H1, H6− 

S7 H2−6 H1,H7,  

S8 H1−6 H7,  

S9 H4, 5 H1−, H6− 

S10 H3−6 H1, , H7− 

S11 H2−7 H1, H8 

S12 H1−8 / 

Table 5 Heated partitions of different heating conditions along the bay. 386 

Heating conditions along the bay  T1 T2 

B1 F3−F5 F1 F2, F6−F12 

B2 F2−F6 F1, F7−F12 

B3 F1−F7 F8−F12 

B4 F1−F12 / 



  387 
Fig. 10 Partition of steel members along the span. 388 

  389 

Fig. 11 Partition of steel members along the bay. 390 

Single-layer steel portal frames are one of the large-space structures, and the fire 391 

scenario is localized. For simplification in this example, the localized fire is assumed 392 

to be the Eurocode parametric fire [51] with a duration of 60 min, and the air 393 

temperature can be calculated as 394 

 ( )
0.2 1.7 19

60 60 60

g 20 1325 1 0.324e 0.204e 0.472e

t t t

T t

     
−  −  −      

     
 

= + − − − 
  

 (14) 395 

where Tg is the air temperature (℃), and t is the fire duration (min).  is a dimensionless 396 

parameter related to the opening factor O (m1/2) and the thermal absorptivity b 397 

(J·m−2·s−1/2·℃−1) of the burning space: 398 

 ( )

( )

2

2

/

0.04 /1160

O b
 =  (15) 399 

Note that other reliable fire models can also be used for different kinds of fire sources. 400 

For unprotected steel members, the steel temperature can be calculated based on 401 

an iterative process [52]: 402 

 ( ) ( ) ( )s g s s

s s

1
( )

F
T t t T t T t t T t

c V



 +  =    −  +   (16) 403 

where Ts is the steel temperature (℃), cs is the specific heat of steel (J·kg−1·℃−1), ρs is 404 

the unit mass of steel (kg·m−3), F is the surface area of the steel member per unit length 405 

(m2/m), V is the volume of the steel member per unit length (m3/m), and Δt is the time 406 

interval.  is the combined heat transfer coefficient (W·m−1·℃−1) related to the 407 

convective and radiative heat transfer coefficients c and r: 408 

 c r  = +  (17) 409 
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T T
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=  

−
 (18) 410 

in which r is a dimensionless parameter related to the combined emissivity, and σ is 411 

the Stephan-Boltzman constant which should be taken as 5.67×10−8 W/(m2·℃4). 412 

The parameter  controls the shape of the air temperature-time curve, and a large 413 

 indicates a high heating rate. To further consider the randomness of the fire scenario, 414 

 is assumed to obey U(0.5, 5). In this case, the heated rafters will reach a temperature 415 

between 800℃ to 1200℃, as shown in Fig. 12. 416 

 417 

Fig. 12 Air and steel temperature-time curves based on Eurocode parametric fire. 418 

 419 

3.3 Key data involved in the ML model 420 

Preparation of the dataset is a crucial step in ML. As described in Section 2.2, the 421 

KMPPs, i.e., displacement of key joints and the temperature of key members, will be 422 

extracted from FE analysis as key data involved in training. 423 

(1) Selection of KMPPs 424 

For single-span steel portal frames, the lateral constraints provided by the purlins 425 

can be ignored when calculating the vertical displacement of the rafter, as there is a 426 

significant difference in the stiffness. Ji et al. [13] indicated that the KMPPs of single-427 

span steel portal frames are the displacements of apex and eaves in the x-z plane of the 428 

bay, for the evaluation of the collapse state under fire, as shown in Fig. 13. In Fig. 13, 429 

VvL and VhL are the vertical and horizontal displacements of the left eave, respectively; 430 

VvR and VhR are the vertical and horizontal displacements of the right eave, respectively; 431 

Vp is the vertical displacement of the apex. 432 

However, we need to highlight that it is difficult to judge in time which bay is the 433 
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most seriously affected in real fire conditions. Therefore, it is reasonable to monitor as 434 

many potential displacements of the apex and eaves of each bay under fire as possible 435 

in order to evaluate the collapse state of the burning frame based on the bay with the 436 

largest deformation. In this way, the same ML framework needs to be adopted multiple 437 

times at the design phase (offline) in order to ensure the real-time prediction of the ML 438 

model at fire scenes. As for the numerical example mentioned herein, the fire is 439 

assumed to be ignited and spread from the fourth bay. For the sake of simplification, 440 

only the 5 key displacements of the fourth bay are adopted as KMPPs for real-time 441 

monitoring of the collapse state. VvL and VhL are selected as easy-to-measure KMPPs 442 

(supposing the radars are located at the left side of the structure as shown in Fig. 13), 443 

i.e., part of the inputs, while the rest of the displacements in Fig. 1 are defined as hard-444 

to-measure KMPPs, i.e., the outputs. In this way, the values of nmd and npd are 2 and 3, 445 

respectively. The reliability of on-site arranged microwave radars for displacement 446 

measurement has been proved in literature [53, 54]. 447 

(2) Selection of temperatures 448 

Another part of the inputs is the temperature of key members. As the columns and 449 

rafters are equally divided into two parts as temperature partitions shown in Fig. 10, a 450 

thermocouple is pre-embedded in the middle of each component at each bay. Since 451 

there are only 4 heating conditions along the bay of the example frame herein, as shown 452 

in Fig. 11, only the temperature information at the 5th, 6th, 7th, and 8th bay is adopted 453 

for network training for simplification. The arrangement of the thermocouples is 454 

exhibited in Fig. 13, where the total number of thermocouples nth is 4×8 = 32. 455 

 456 

Fig. 13 Arrangement of microwave radars and thermocouples. 457 

3.4 ML models and training datasets 458 

In this section, two ML models with different inputs and outputs will be established. 459 

By comparing the performance of both models, we would like to illustrate the necessity 460 

of conducting parameter identification. 461 

For Model 1, the tth element of Xj and Yj are constructed as 462 

 ( ) ( ) ( ) ( ) ( ) ( ) hL vL 1 2 32, , , , ,
t t t t t t

j V V T T T=x  (19) 463 
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 ( ) ( ) ( ) ( ) p hR vR, ,
t t t t

j V V V=y  (20) 464 

in which 
( )t

iT  represents the tth element of the time series data recorded by the ith 465 

thermocouple (i = 1, 2, …, 32). 466 

500 samples are generated through thermal-structural coupling analysis using the 467 

FE model established in Section 3.1. The distributions of uncertain parameters are 468 

shown in Fig. 14, where uniform distributions can be assumed. The fire duration is 469 

selected as 3600 s with a recording interval Δt of 10 s, i.e., tmax = 3600/10 = 360. Here 470 

we note again that for Model 1, some of the variables are randomly selected as specified 471 

in Section 3.2, and parameter identification is expected to be implicitly conducted by 472 

introducing the easy-to-measure KMPPs and temperatures into the inputs. 473 

   474 

   475 

   476 

Fig. 14 Distributions of uncertain parameters. (a) Load intensity at 1st and 12th bay. (b) Load 477 

intensity at 2nd−11th bay. (c) Yield strength. (d) Ultimate strength. (e) Dimensionless parameter . 478 

(f) Fire scenario. 479 
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For Model 2, the tth element of Xj,c and Yj,c are constructed as 480 

 ( ) ( ) ( ) ( ) ,c 1 2 32, , ,
t t t t

j T T T=x  (21) 481 

 ( ) ( ) ( ) ( ) ( ) ( ) ,c hL vL p hR vR, , , ,
t t t t t t

j V V V V V=y  (22) 482 

500 samples are also generated for the training of Model 2. However, it is obvious 483 

that Model 2 cannot deal with uncertain structural parameters. In this case, the intensity 484 

of the vertical load is assumed to be a deterministic value of 0.4qu. Besides, the elastic 485 

modulus, yield strength, and ultimate strength of steel at ambient temperature are also 486 

set deterministically as their design values. The fire duration and the recording interval 487 

are the same as that of Model 1. 488 

 489 

Fig. 15 Illustration of inputs and outputs of Models 1 and 2. 490 

However, the burning frame always collapses before the predefined fire duration 491 

of 3600 s, and the collapse time varies with the fire parameters mentioned in Section 492 

3.2. Therefore, the training samples are inconsistent in the time dimension, which 493 

brings unnecessary trouble to the integration of training data. In this case, the 494 

temperature and displacement data at ambient temperature, i.e., 20℃ and 0 mm, are 495 

added to the beginning of the time series in order to make the time dimension unified 496 

to tmax. Fig. 15 gives an illustration of the inputs and outputs of Models 1 and 2 after 497 

the data supplement. The samples are then randomly divided into three subsets, 498 

including the training dataset with 300 samples, the validation dataset with 100 samples, 499 

and the test dataset with 100 samples. Only the training and validation datasets will be 500 

involved in updating the learnable parameters based on the learning method described 501 

in Section 2.5. Since the uncertain parameters are randomly selected, the test dataset 502 

can be regarded as a completely unknown dataset for the evaluation of the trained agent. 503 

 504 

3.5 Training history 505 

The training of Models 1 and 2 is conducted using TensorFlow in Python. All of the 506 

inputs and outputs are scaled within the range of [−1, 1] to improve the performance of 507 

the agent. The weights and biases of all LSTM and FC layers are initialized randomly 508 

t / s T1 / ℃ T2 / ℃ … T31 / ℃ T32 / ℃ VhL / mm VvL / mm Vp / mm VhR / mm VvR / mm

0 20 20 … 20 20 0 0 0 0 0

10 20 20 … 20 20 0 0 0 0 0

20 20 20 … 20 20 0 0 0 0 0

30 21.42 21.42 … 20 20 -0.439 0.012 0.043 0.405 -0.001

40 25.53 25.53 … 20 20 -0.878 0.021 0.086 0.809 -0.002

… … … … … … … … … … …

3600 992.96 992.96 20 20 1281.53 -815.71 -4435.17 -864.53 -764.53

Input for Model 1

Input for Model 2 Output for Model 2

Output for Model 1

ambient temperature 

elevated temperature 



before training. The mean squared error (MSE) is selected as the loss function, and the 509 

objective of the training process is to minimize the loss function by adjusting the 510 

trainable parameters. The training phase consists of 50000 epochs with a batch size of 511 

128, which means 128 samples in the training dataset are selected randomly in an epoch 512 

to update the trainable parameters of the network. As suggested in Section 2.5, Adam 513 

is selected as the optimizer. The hyperparameters , 1,  and  are set as 0.001, 0.9, 514 

0.999, and 10−8, respectively. 515 

The history of the losses is shown in Fig. 16 on a logarithmic scale. It can be 516 

observed that the loss functions converge at a low value after 10000 epochs. The train 517 

loss is larger than the test loss in Fig. 16(b) because the regularization approach 518 

‘Dropout’ is used in training yet ignored in testing. The training is conducted on a laptop 519 

with a CPU of Intel(R) Core(TM) i7-8700k @3.70 GHz and a GPU of NVIDIA 520 

GeForce GTX 960. 12 cores with a CPU utilization of 17 % participated in the training. 521 

8.7 G physical memory out of 16 G and 2.8 G GPU memory out of 4 G were included 522 

in the training. The computational cost for Models 1 and 2 are 31.4 h and 30.1 h, 523 

respectively. 524 

 525 

 526 

Fig. 16 Training history. (a) Model 1. (b) Model 2. 527 

(a)

(b)



4 Model performance and discussion 528 

In this section, the model performance will be evaluated by comparing the actual and 529 

predicted displacement-time curves of the test dataset. Here we note again the test 530 

dataset has not participated in the training process and can be regarded as a completely 531 

unknown dataset. To quantitatively evaluate the performance of the trained agent, the 532 

following indices are introduced: 533 

(1) Correlation coefficient r 534 
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 (23) 535 

(2) Coefficient of determination R2 536 
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 (24) 537 

(3) Root mean squared error RMSE 538 
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 (25) 539 

where y(t) with various subscripts is the tth element of time series data y and y  is the 540 

average value of y. Subscripts ‘true’ and ‘pred’ indicate the actual and predicted time 541 

series, respectively. tmax is the length of y. Generally, a satisfactory prediction can be 542 

assumed if r is close to 1, R2 is close to 1, or RMSE is close to 0. 543 

 544 

4.1 Performance of Model 1 545 

For Model 1, the inputs of the test dataset are fed into the trained agent to predict the 546 

hard-to-measure KMPPs Vp, VhR, and VvR. The distribution histograms of r, R2, and 547 

RMSE are shown in Fig. 17, where n is the number of samples (with a maximum of 100, 548 

which is the same as the number of test samples). It can be observed that the agent can 549 

give a precise prediction as the value of r and R2 is greater than 0.8, and the value of 550 

RMSE is smaller than 20 mm for most samples, especially for Vp and VhR. Fig. 18 shows 551 

a typical comparison case of the actual and predicted displacement-time curves, where 552 

satisfactory agreement can be concluded. 553 

However, it is notable that for rare cases, r or R2 is very small for VhR and VvR. 554 



Further analyses indicate that the frame does not collapse due to low heating rates or 555 

load levels. A typical example is shown in Fig. 19, where the frame has small 556 

deformation, especially for VvR, and a slight data fluctuation will bring significant 557 

relative errors according to Eqs. (23) and (24). However, this data fluctuation does not 558 

influence the judgment of the collapse state as the trend of the actual and predicted 559 

curves are very similar. In this case, RMSE is more appropriate than r and R2 for 560 

evaluation. On the other hand, RMSE is scale-dependent, and an enormous value will 561 

be calculated when the ultimate displacement is large, e.g., Vp in Fig. 18. In this case, r 562 

and R2 are more appropriate than RMSE for evaluation. Based on careful analyses of 563 

the results, we recommend that satisfactory performance of the agent can be concluded 564 

when the evaluation indices meet the following requirements: 565 

 ( ) ( ) ( )2r R RMSE        (25) 566 

where ,  and  are threshold values: 567 

 for high accuracy requirements,  = 0.9,  = 0.9, and  = 10 mm; 568 

 for medium accuracy requirements,  = 0.8,  = 0.8, and  = 20 mm; 569 

 for low accuracy requirements,  = 0.7,  = 0.7, and  = 30 mm. 570 

The percentage of test samples (using Model 1) satisfying the requirements 571 

mentioned above is shown in Fig. 20. Since over 90% of the samples meet the high 572 

accuracy requirements, it can be concluded that the trained agent has successfully 573 

learned the mapping relationship of this specific structure accurately without overfitting, 574 

and the orders of magnitude of the prediction results are identical to the true data. 575 

Notably, compared with the fluctuated prediction curves in literature [21], the 576 

smoothness of the curves in Fig. 18 indicates the superiority of the application of the 577 

LSTM network when dealing with time series data with respect to traditional supervised 578 

learning methods. 579 
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 582 

Fig. 17 Evaluation indexes of Model 1 for the hard-to-measure KMPPs. 583 

 584 

Fig. 18 A typical case of the displacement prediction under large deflections. 585 

 586 

Fig. 19 A typical case of the displacement prediction under small deflections. 587 
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 588 

Fig. 20 Performance of Model 1 for the hard-to-measure KMPPs. 589 

We also need to highlight that since the fire scenarios in the test dataset are 590 

unknown to the trained agent, i.e., they have not participated in the training process, it 591 

can be concluded that the agent has successfully learned the mapping relationship from 592 

temperature to structural responses, and can adapt to general building fire scenarios. 593 

Apart from the prediction accuracy, the computational cost is also an important 594 

consideration for real-time monitoring in fire rescue. The computational cost for Model 595 

1 to predict a single case of hard-to-measure KMPPs is 0.621 s on the same laptop used 596 

for training, which is significantly smaller than the recording interval, i.e., 10 s. 597 

Therefore, it is reasonable to use Model 1 at real fire scenes to realize real-time 598 

prediction of hard-to-measure KMPPs. 599 

 600 

4.2 Performance of Model 2 601 

For model 2, the measured temperatures are used as inputs, while all the KMPPs are 602 

the outputs as described in Section 3.4. In order to make Models 1 and 2 comparable, 603 

the test dataset considering randomness, i.e., the same test dataset used to evaluate 604 

Model 1, is used to evaluate the performance of Model 2 in dealing with the uncertain 605 

parameters. The performance of the test samples of Model 2 is shown in Fig. 21. 606 

By comparing Figs. 17 and 21, it can be concluded that the regression performance 607 

of Model 2 is considerably worse than that of Model 1 when the uncertain parameter 608 

identification is ignored, as the percentage in Fig. 21 is smaller than that of Model 1, 609 

especially at high accuracy requirements. In other words, the uncertainties in load 610 

distribution and material properties will significantly affect the structural response 611 

under a specific fire scenario and must not be ignored in early warning of fire-induced 612 

building collapse. Specifically, the actual physical model of the burning building cannot 613 

be directly determined since the uncertain parameters can differ from their design 614 
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values. As the easy-to-measure KMPPs implicitly contain the information of the actual 615 

values of the uncertain parameters, Model 1 can identify the actual physical model of 616 

the burning building through the inputs of easy-to-measure KMPPs, while Model 2 617 

always uses a determined (wrong for most cases) physical model that causes huge errors. 618 

 619 

Fig. 21 Performance of Model 2 for different KMPPs. 620 

621 

 622 

Fig. 22 Typical cases of comparison of actual and predicted displacement-time curves using 623 

Model 1 and Model 2. (a) Case 1. (b) Case 2. (c) Case 3. 624 

Fig. 22 shows some typical cases of the comparison of the actual and predicted 625 
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displacement-time curves using Model 1 and Model 2. It can be observed that Model 2, 626 

to a great extent, misjudges the collapse state of the structure, which proves the 627 

necessity of considering structural parameter uncertainties in the training of the ML 628 

model. 629 

 630 

4.3 Early warning of fire-induced collapse using the proposed method 631 

Once all the KMPPs are obtained either through field measurement or model prediction, 632 

the collapse state of the burning frame can be judged, and the remaining collapse time 633 

can also be predicted according to the early warning theory proposed by Li et al. [13, 634 

22]. Note that only the KMPP data (measured directly and obtained using the proposed 635 

ML approach) are provided to the early-warning algorithm. 636 

To illustrate the application process of the proposed method in real-time early 637 

warning of fire-induced collapse, a typical case in the test dataset of Model 1 is adopted 638 

herein. At the fire rescue scene, suppose the inputs, i.e., VhL and VvL, are measured by 639 

microwave radars while Vp, VhR, and VvR of the burning frame are predicted by the 640 

trained agent (Model 1), as shown in Fig. 23. 641 

 642 

Fig. 23 Measured and predicted KMPPs of a typical frame under fire. 643 

After fire ignition (0 s ~ 600 s), the measured VhR and predicted VhL expanded 644 

towards opposite directions, as shown in Fig. 24(a). Therefore, an overall collapse mode 645 

can be identified for the burning frame according to literature [13]. Since the predicted 646 

Vp does not reach its peak value, the collapse state of the frame is safe. At this time, the 647 

firefighters can be assured of firefighting and rescue. 648 

When Vp reaches its peak value at about 860 s, as shown in Fig. 24(b), the collapse 649 

state changes from the safety state to the 1st warning state, according to Table 1. In this 650 

case, the fire has influenced the load-bearing capacity of the heated rafters, and the 651 
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firefighters should speed up the rescue. 652 

When VvL reaches its peak value at about 1140 s, as shown in Fig. 24(c), the 653 

collapse state changes from the 1st warning state to the 2nd warning state, according to 654 

Table 1. The fire has affected the load-bearing capacity of the heated columns, and the 655 

collapse risk greatly increases. In this case, the firefighters should evacuate from the 656 

burning frame to avoid casualties. 657 

When displacement velocity of Vp reaches the critical value at about 1200 s, as 658 

shown in Fig. 24(d), the collapse state changes from the 2nd warning state to the 3rd 659 

warning state, according to Table 1. In this case, the burning frame is very dangerous, 660 

and all the firefighters must evacuate immediately. The prediction results of VvL indicate 661 

that the frame will collapse at about 1400 s as the heated rafter has a large deflection of 662 

3 m. 663 

    664 

 665 

Fig. 24 Collapse state of the burning frame. (a) safety state. (b) 1st warning state. (c) 2nd warning 666 

state. (d) 3rd warning state. 667 

Table 6 shows the comparison of the predicted remaining collapse time against the 668 

real remaining collapse time of the burning frame at each warning level. The prediction 669 

results are satisfactory at high warning levels, while there is a relatively large error at 670 

low warning levels, which aligned with previous conclusions [13]. The reason for the 671 
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prediction error lies in the definition of M

it . M

it  has been set as a fixed value based on 672 

reliability theory in order to consider the influence of determinate geometric parameters, 673 

described in Section 3.1, on the remaining collapse time. The exact ratio of remaining 674 

collapse time to fire exposed time can also vary with the determinate geometric 675 

parameters and fire parameters. However, we need to highlight that the predicted 676 

collapse time will be updated once a higher warning level is raised. In this case, the 677 

real-time early warning for fire-induced collapse can still be realized as the predicted 678 

remaining time is more accurate for higher early-warning levels. Therefore, it can be 679 

concluded that the proposed ML framework (to avoid confusion, for Model 1) is 680 

feasible for making the hard-to-measure KMPPs easy to obtain, and the predicted 681 

KMPPs can be successfully used for conducting early warning of fire-induced collapse. 682 

Table 6 Prediction of collapse time under each warning level. 683 

Warning level 
M

iT  
M

it (reliability level = 80%) Predicted 
R

iT  Real 
R

iT  

1 860 s 1.703 1465 s 540 s 

2 1140 s 0.299 341 s 260 s 

3 1200 s 0.176 211 s 200 s 

 684 

5 Conclusions and future work 685 

This study proposes a real-time prediction method for hard-to-measure KMPPs of fire-686 

induced collapse based on ML. The LSTM network is incorporated with the FC 687 

network to predict hard-to-measure KMPPs by inputting easy-to-measure KMPPs and 688 

the temperature. A single-span steel portal frame is used as an example to illustrate the 689 

training and application process of the proposed method. The findings can be concluded 690 

as follows: 691 

(1) Uncertainties, including the load distribution and intensity, structural material 692 

properties, and fire scenarios, significantly influence the structural responses 693 

at real fire scenes. Therefore, the uncertainties must not be ignored when 694 

conducting early warning of fire-induced building collapse; 695 

(2) The uncertainties at real fire scenes can be successfully identified implicitly 696 

by selecting the measured temperatures and easy-to-measure KMPPs. In 697 

specific, the former and the latter deal with the identification of the actual fire 698 

scenario and the structural parameters (i.e., actual load distribution and 699 

intensity, material properties), respectively; 700 

(3) For predicting time series data in structural fire engineering, the application of 701 

the LSTM network can be superior to other supervised learning methods; 702 

(4) The trained agent considering parameter uncertainties has good robustness in 703 



predicting completely unknown datasets, revealing its prediction capability for 704 

real fire scenarios. In this case, the proposed framework can be used as a 705 

supplement to traditional displacement measurement means in real fires; 706 

(5) The collapse state of the burning structure can be monitored timely through 707 

measured and predicted KMPPs owing to the low computational costs of the 708 

trained agent. 709 

As a pioneer study in the real-time prediction of structural responses under fire 710 

considering parameter identification, this paper offers an approach to help firefighters 711 

judge the collapse risk of burning buildings and make wise decisions. 712 

We need to note that the limitation of this study is that the agent should be 713 

individually trained for each building during the design stage. Our future work will 714 

increase the applicability of the agent to structures with different sizes and topological 715 

relationships by incorporating the graph neural networks. 716 

 717 

Data Availability Statement 718 
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